Словом, физики берут конкретный факт, обнаруженный в конкретных опытах, и принимают (пли, если хотите, провозглашают), что данный факт должен иметь место в любых ситуациях, аналогичных тем, где мы с ним уже встречались. Строго говоря, принцип в науке — предположение, поэтому его продолжают проверять.

Мы с вами уже встретились в этой книге с принципом относительности, встретимся с принципом, объявляющим скорость света высшей из возможных скоростей, и другими. Итак, в науке слову «принцип» придается несколько иное значение, чем в обыденной жизни. Зато отношение к принципам и тут и там одинаковое: новые принципы становятся общепринятыми с большим трудом и очень редко; и, как в жизни, их не меняют и от них не отрекаются, разве что в случае полного краха… в жизни— личности или общества, в науке — теории, а то и целой научной дисциплины.

Первым человеком, убедительно обосновавшим принцип относительности, стал Галилео Галилей. Современники ждали от него ответа на коронный вопрос противников Коперника: если Земля движется вокруг Солнца, вращаясь еще притом вокруг собственной оси, то почему это не сказывается, например, на движении падающего с башни камня — ведь «за то время, пока камень находится в воздухе, опускаясь к центру Земли, сама Земля, двигаясь с великой скоростью к востоку и неся на себе основание башни, по необходимости должна была бы оставить камень на таком же расстоянии позади себя, на какое за то же самое время ее уносит кружение…»

Галилей в «Послании к Франческо Инголи», противнику коперниканства, дал подробнейший ответ на этот и подобные вопросы. Вот одна из самых ярких и важных для понимания принципа относительности Галилея страниц: «В большой каюте под палубой какого-нибудь крупного корабля запритесь с кем-либо из ваших друзей; устройте так, чтобы в ней были мухи, бабочки и другие летающие насекомые; возьмите также большой сосуд повыше, из которого вода падала бы по каплям в другой нижний сосуд с узкой шейкой; и пока корабль стоит неподвижно, наблюдайте внимательно, как эти насекомые будут с одинаковой скоростью летать по каюте в любом направлении, вы увидите, как рыбки начнут двигаться безразлично в направлении какой угодно части края сосуда; все капли, падая, будут попадать в сосуд, поставленный снизу… Когда вы хорошо заметите себе все эти явления, дайте движение кораблю и притом с какой угодно скоростью; тогда (если только движение его будет равномерным, а не колеблющимся туда и сюда) вы не заметите ни малейшей разницы во всем, что было описано, и ни по одному из этих явлений, ни по чему-либо, что станет происходить с вами самими, вы не сможете удостовериться, движется ли корабль или стоит неподвижно… Нам никогда не удается узнать по внутренним предметам, что с ним происходит; как же удастся узнать это у Земли, которая всегда находилась для нас в одном и том же состоянии?»

Все это и многое другое Галилей говорил для того, чтобы подвести своих современников к принципу, который на современном научном языке гласит: все законы механики справедливы в системах, которые движутся относительно друг друга прямолинейно и с постоянной скоростью.

Термин «относительность» стал одним из самых популярных и, конечно, благодаря широко известной ныне теории относительности. И все-таки перед тем как сесть за эту главу, автор провел опрос своих знакомых, чтобы выяснить, что, по их мнению, представляет собой принцип относительности. К специалистам-физикам он не обращался, решив, что они знают это «по положению»; не спрашивал он и самых заядлых гуманитариев, поскольку справедливо полагал, что они не знают этого — тоже «по положению». Среди опрошенных оказались инженеры самых разных специальностей, химики, врачи, архитекторы, журналисты, пишущие о науке. Некоторые из ответов отдаленно приближались к истине, некоторые не имели к ней никакого отношения, многие смельчаки сознались, что представления не имеют о том, о чем столько слышали.

Потому и появился в книге этот рассказ о принципе относительности, или, по-иному говоря, о трех принципах относительности: галилеевском, частном принципе относительности Эйнштейна и общем принципе относительности его же.

Обратим внимание: популярная разговорная формула, гласящая, что все в мире относительно, не имеет к данному принципу даже косвенного отношения. Он-то ведь провозглашает общность, а не различие законов для разных систем отсчета — при условии, что все они движутся с постоянной скоростью, как галилеевские корабли.

Все, что происходит в мире, должно при исследовании физиками иметь четко обозначенный адрес. Когда мы надписываем на конверте адрес приятеля, то пользуемся системой отсчета, связанной с планетой Земля. Порою вместо термина «система отсчета» применяют термин «система координат». Иногда говорят, что между системой отсчета и системой координат примерно та же разница, что между городом и его планом, между страной и ее картой, указывая при этом, что как карта может изображать несуществующую страну, так система координат может иметь чисто расчетный смысл. Математики работают, например, с многомерными системами координат, между тем наш реальный мир знает только три пространственных измерения. Система же отсчета всегда берет за основу какие-то реальные тела, так сказать, опорные точки. Впрочем, для этой книги такие подробности не имеют существенного значения.

(Помню, как студентом я присутствовал при закладке раскопа в археологической экспедиции. Раньше, чем первая лопата вонзилась в тугой дерн, зеленую надгробную пелену над домами и улицами древнего города, мы под руководством специалиста колдовали с теодолитами, намечая опорные точки для сетки координат плана будущего раскопа. В эти точки были вбиты аккуратные колышки. А затем каждый участок раскопок привязывался к этим колышкам, обозначался с учетом точного расстояния от них. С этого момента все, что выбрасывали лопаты, все, что осторожно зачищалось кистью и ножом, — все это получало четкую прописку в пространстве: квадрат такой-то, на глубине такой-то.

Археологам хорошо: у них есть колышки и есть, куда их вбивать. В астрономии и ряде областей физики определение точек отсчета — дело чрезвычайно сложное, но здесь не место вдаваться в тонкости этой проблемы.)

Суть принципа относительности Галилея и частного принципа относительности Эйнштейна проста: можно говорить только об относительной скорости, абсолютная скорость в нашем физическом мире — абстракция, более того — абсурд, она нс только не имеет, но и не может иметь реального воплощения. Это понятие лишено смысла, даже сама по себе абстракция абсолютной скорости не нужна физике. Все системы отсчета при равномерном движении равноправны.

Мы измеряем скорость поезда и самолета по телам отсчета, находящимся на Земле. Пассажир поезда ходит по вагону поезда с одной и той же относительной скоростью, стоит ли поезд на станции или делает сто километров в час (строго «по Галилею»!).

Для пассажира поезда системой отсчета становится его вагон. Недаром же нам кажется, что не мы едем мимо телеграфных столбов, а они бегут мимо нас назад. Два поезда, как два галилеевских корабля, верны одним и тем же законам. Так же, как два современных самолета — на средних участках пути, где они уже не ускоряют свой полет и еще не замедляют его. Экипаж, пассажиры, кресла и приборы движутся вместе с самолетом с той же скоростью, что и он, и, естественно, в том же направлении.

Такие системы отсчета, в которых для постороннего наблюдателя все тела, если на них не действуют внешние силы, движутся поступательно по прямой и с постоянной скоростью, называются инерциальными системами. Во всех таких системах, согласно принципу относительности Галилея, остаются неизменными все законы механики, согласно же специальному принципу относительности Эйнштейна — все законы природы. В каждом из самолетов (на средних участках пути!) по одним и тем же законам бьются сердца людей, тикают наручные часы; даже ходики с гирями будут одинаково тикать в обоих самолетах[9].

вернуться

9

Рассуждая так, мы отвлекаемся от того, что на самолеты, летящие на разной высоте, тяготение действует неодинаково. Впрочем, эту разницу могут уловить только сверхточнейшие приборы.


Перейти на страницу:
Изменить размер шрифта: