Но так, согласно специальной теории относительности, дело обстоит тогда, когда самолеты летят с постоянной скоростью (пусть и разной для каждого из них). На первом и последнем участках своего маршрута каждый самолет как система отсчета, строго говоря, временно выпадает из-под действия специального принципа относительности. Он летит с ускорением, положительным в начале пути и отрицательным в конце его, и становится неинерциальной системой отсчета — по отношению, положим, к другим самолетам на средних участках их полета.

Пассажира ускорение прижимает к спинке кресла. Гиря на часах-ходиках, подвешенных к стенке кабины, отклонится в направлении, противоположном направлению полета. Это, естественно, скажется на их ходе.

Ну, а на спутнике Земли, вращающемся вокруг пашей планеты, часы-ходики вообще не будут ходить. Там ведь все тела находятся в невесомости, и гиря вообще не сможет выполнить свою столь привычную нам роль «гравитационного двигателя». Итак, инерциальные системы подобны друг другу по характеру действующих в них законов природы. Системы неинерциальные, движущиеся не с постоянной скоростью, отличаются от инерциальных достаточно резко.

Специальная теория относительности не входит в число предметов, о которых надо писать в этой книге. Нам она важна только как этап рождения общей теории относительности, как ступенька, с которой Эйнштейн шагнул к решению проблемы тяготения. Почти все, что пишут о теории относительности Эйнштейна в популярной литературе, относится целиком или глазным образом к специальной теории. Именно из нее следует «парадокс близнецов», согласно которому тот из них, что отправится в космический полет со скоростью, близкой к скорости света, вернувшись на Землю, окажется моложе, чем ожидавший его на родной планете брат. И поражающая воображение картина роста массы любого тела с приближением его скорости к скорости света (с) — тоже оттуда. И представление о том, что длина такого тела должна сокращаться по мере приближения к с.

Специальная теория относительности была создана в 1905 году, ее объектом стали тела, движущиеся с гигантскими скоростями. Она отнюдь не была теорией гравитации, однако сразу же нанесла тяжелый удар Ньютонову закону всемирного тяготения. Дальнодействие — дальнодействием, действие через посредников — действием через посредников; этот вопрос, как мы уже знаем, для самого Ньютона оставался нерешенным, но сам закон подразумевал, что силы тяготения передаются на любое расстояние мгновенно, их скорость принималась бесконечной. Конечно, между Ньютоном и Эйнштейном нашлось немало ученых, не веривших в саму возможность бесконечных скоростей. Например, еще Лаплас «определил», что скорость передачи силы тяготения должна превышать скорость света по крайней мере в семь миллионов раз, но все же быть конечной. Однако все такие попытки довольно быстро демонстрировали свою бесплодность.

Эйнштейн своей первой теорией обрубил хвост у бесконечности, поставил пределом скоростей — скорость света, равную (приблизительно) тремстам тысячам километров в секунду. Второй принцип специальной теории относительности сегодня формулируется так: любые взаимодействия могут распространяться лишь со скоростями, не превышающими скорость света в пустоте.

Но это уже второй из двух главных ее принципов. Первый же гласит, что все законы природы остаются неизменными во всех инерциальных системах отсчета, в которых тела, не испытывающие действия внешних сил, двигаются поступательно по прямой с постоянной скоростью.

Казалось бы, что особенного в обоих принципах? Разве еще Галилей (и Ньютон) не провозгласил, что тело сохраняет состояние покоя или равномерного движения, пока не будет выведено из этого состояния внешней силой? Разве он не показал, что все законы механики действуют одинаково во всех инерциальных системах отсчета? Что меняется от того, что в определении Галилея слова «законы механики» оказались теперь заменены на «законы природы»? Да, меняется нс так уж много, особенно если учесть, что для Галилея, как и для Ньютона, почти вся физика если и не сводилась к механике, то в идеале должна была к ней свестись. Принцип Эйнштейна есть естественное развитие принципа относительности Галилея.

Но к нему ведь был еще прибавлен принцип предельности скорости света, и от соединения этих двух принципов рухнуло старое привычное мироздание, или, говоря точнее, не рухнуло, а стало одним из нижних этажей нового мироздания.

Вся наука является не чем иным, как усовершенствованием повседневного мышления.

Альберт Эйнштейн

Специальная теория относительности была использована как инструмент для углубленного исследования многих физических явлений. Были предприняты попытки применить ее и к тяготению. Но сам Эйнштейн довольно быстро пришел к выводу, что без коренных изменений теорию тяготения не создашь. Он много размышлял над тем, как развить специальный (точнее сказать— частный; французские ученые иногда применяют здесь еще более, пожалуй, удачный термин — ограниченный) принцип относительности в то, что он называл общим принципом относительности. Вспомним, ранее уже говорилось, что главным для Эйнштейна в его частном принципе относительности было сохранение действия всех законов природы в инерциальных системах отсчета. Теперь он хотел найти способ распространить принцип относительности на все системы отсчета, в том числе и на неинерциальные, способ установить, что все законы природы действуют всюду, при условии введения заранее установленных поправок на характер самих систем отсчета. Ему удалось решить и такую задачу.

Для этого понадобилось положить в основание новой, общей теории относительности, кроме двух главных принципов ее предшественницы, еще и третий принцип — принцип эквивалентности.

Ничто не удается без предвзятой идеи. Надо только настолько обладать благоразумием, чтобы не делать из нее выводов, не подтвержденных опытом. Предвзятые идеи, подвергнутые строгому контролю опыта, представляют собой оживляющее пламя наблюдательных наук.

Луи Пастер

Пусть, для разнообразия, представит нам принцип эквивалентности американский фантаст Реймонд Ф. Джоунс. В его рассказе «Уровень шума» физик растолковывает психологу: «Его (принцип эквивалентности. — Р. П.) выдвинул Эйнштейн в одной из своих первых работ, кажется, в 1907 году. Он утверждал, что сила инерции эквивалентна силе тяжести. То есть в системе, которая движется с ускорением, человек будет испытывать действие силы, ничем не отличающееся от действия силы тяжести. С другой стороны, человек внутри свободно падающего лифта не замечает действия земного притяжения. Если бы он встал на весы, то увидел бы, что ничего не весит. Жидкость не выливалась бы из стакана. Согласно принципу эквивалентности, никакой физический эксперимент не может обнаружить земное притяжение внутри любой системы, свободно движущейся в гравитационном поле».

Физики, выступающие не в ролях героев фантастики, но в качестве авторов статей, формулируют ту же мысль точнее, но сложнее: «Согласно принципу эквивалентности, никакими физическими экспериментами нельзя отличить движение тел под действием гравитации от движения в соответствующим образом подобранной неинерциальной системе отсчета, то есть в системе, движущейся с ускорением относительно инерциальной системы отсчета».

Это — цитата из однотомной энциклопедии «Физика космоса». И дальше энциклопедия разъясняет: «В самом деле, ускорение всех тел в данном гравитационном поле одинаково, ускорение всех тел, свободно движущихся в неинерциальной системе отсчета, также одинаково…»

Вот представьте себе космолет, движущийся где-нибудь в межзвездном пространстве с ускорением, точно равным ускорению земного тяготения, то есть примерно 9,8 метра на секунду в квадрате.

Положим, что космолет имеет форму того пушечного снаряда, в котором Жюль Верн отправлял своих героев на окололунную орбиту, и пассажиры корабля ходят по его «дну». Им никогда не удастся установить только по поведению внутри кабины любых физических тел (в том числе их собственных тел), летит ли корабль, прибавляя в скорости почти по десять метров каждую секунду, или спокойно стоит на космодроме. В корабле приземлившемся проявляет себя гравитационное поле. Корабль, летящий с ускорением земного тяготения, — та самая «соответствующим образом подобранная» неинерциальная система отсчета. Космонавт, направляющийся к звездам, подбросит шарик, а тот поведет себя так же, как шарик, подброшенный пастушком где-нибудь на зеленом лугу. Здесь можно, при желании, повторить опыт, описанный Галилеем, с рыбками, бабочками и прыжками в каюте корабля — и так же, как внутри галилеевского корабля ничто не изменялось при движении сравнительно с состоянием относительного покоя, как и здесь нельзя отличить покой в гравитационном поле от неинерциального (то есть с ускорением) движения…


Перейти на страницу:
Изменить размер шрифта: