Определение климата. Климатообразующие факторы. Неизменность солнечной постоянной. Изменения климата вследствие геохимической эволюции атмосферы и гидросферы, приливной эволюции системы Земля-Луна, движения континентов и полюсов. Методы палеоклиматических реконструкций. Ледниковые периоды нижнего протерозоя, верхнего рифея, венда, карбона-перми. Мезокайнозойские палеотемпературы. Неогеновое оледенение Антарктиды. Ледниковые периоды плейстоцена. Астрономическая теория Миланковича. Послеледниковые колебания климата
Климат - это статистический ансамбль состояний, которые проходит система океан-суша-атмосфера за периоды времени в несколько десятилетий. Статистическим ансамблем называют множество, состоящее из известных элементов, если указано, как часто в нем встречается каждый из этих элементов, - тогда можно находить среднее значение по всему множеству для любой количественной характеристики этих элементов (на самом деле в теории климата приходится иметь дело с непрерывными множествами состояний и говорить не о частотах состояний, а о вероятностях различных их совокупностей).
Мгновенное состояние системы океан-суша-атмосфера называют погодой. Она характеризуется некоторым набором глобальных полей, т. е. распределений по земному шару ряда характеристик морской воды, атмосферного воздуха, поверхности Земли и верхнего слоя почвы. Для воды и воздуха нужно брать полные наборы независимых термодинамических и гидродинамических характеристик - температуру, давление, концентрации термодинамически активных примесей (для морской воды - соль, для воздуха - парообразная влага, жидкая вода и лед в облаках и туманах, углекислый газ, пыль различной природы) и векторные скорости движения. На поверхности Земли нужно знать потоки тепла и ТАП (прежде всего - испарение и осадки), наличие снежного и ледового покрова (и их толщину), для суши, кроме того, - характер растительности, влажность почвы, сток влаги.
Периоды времени в несколько десятилетий, указанные в определении климата, выбраны так, чтобы определяемые по этим периодам средние значения (характеристики климата) были наиболее устойчивыми, т. е. меньше всего менялись бы при переходе от одного такого периода к другому. Действительно, фактические данные (например, о температуре воздуха) показывают, что при меньших периодах осреднения (скажем, за год или за несколько лет) средние значения оказываются более изменчивыми (это так называемая междугодичная, а также и более короткопериодная изменчивость погоды). Более интенсивной оказывается и значительно более длиннопериодная изменчивость климата, скажем, с периодами в тысячи лет. Для доказательства этих утверждений на рис. 63 приведен спектр колебаний температуры воздуха в области периодов от года до 10 000 лет, построенный Дж. Куцбахом и Р. Брисоном (1974 г.) по ряду прямых и косвенных данных для Северо-Атлантического сектора земного шара. Этот график дает средний квадрат амплитуды колебаний температуры как функцию от периода колебаний. Заштрихованная область на графике содержит оценки, заслуживающие доверия (дает так называемые доверительные интервалы для ординат спектра). График показывает, что изменчивость температуры имеет широкий минимум в области периодов от 20 до 1000 лет. Мы вправе выбирать периоды климатического осреднения в правой части этого интервала; для использования более длинных периодов осреднения у нас просто не хватило бы фактических данных инструментальных измерений.

Рис. 63. Спектр колебаний температуры воздуха в Северо-Атлантическом секторе земного шара по Дж. Куцбаху и Р. Брисону (1974 г.). f - частоты; f-1 - периоды; S(f) - спектральная плотность.
Климат формируется под действием ряда факторов, которые можно разбить на три группы.
1) Внешние, или астрономические, факторы - светимость Солнца, положение и движение планеты в Солнечной системе, наклон ее оси вращения к плоскости орбиты и скорость вращения, определяющие воздействия на планету со стороны других тел Солнечной системы, - ее инсоляцию (облучение солнечной радиацией) и гравитационные воздействия внешних тел, создающие приливы и колебания характеристик орбитального движения и собственного вращения планеты (а потому и колебания в распределении инсоляции по внешней границе атмосферы).
2)Геофизические и географические факторы - ряд особенностей планеты, из которых для климата Земли наиболее важными являются свойства нижней границы атмосферы - подстилающей поверхности и прежде всего те свойства, которые определяют ее динамическое и тепловое взаимодействие с атмосферой и обмен с нею термодинамически активными примесями. Из этих свойств, по-видимому, на первом месте должно быть названо географическое распределение континентов и океанов.
3)Атмосферные факторы - масса и состав атмосферы (включая и основные ее составные части, и специфические ТАП).
Мы еще не знаем, определяется ли климат всеми этими факторами однозначно, или же при одних и тех же фиксированных значениях всех климатообразующих факторов могут получаться разные климаты. Второе из этих предположений возникает в связи с тем, что за последние 0.6-1 млн. лет каких-либо резких изменений климатообразующих факторов как будто не происходило, однако имели место резкие колебания климата - чередование ледниковых и межледниковых периодов продолжительностью в десятки тысяч лет. Их мы подробно проанализируем ниже, здесь же рассмотрим изменения климатообразующих факторов, происходившие в течение истории Земли, и порождавшуюся ими эволюцию климата.
Легче всего кажется возможным приписывать изменения климата и даже погоды изменениям солнечной радиации. Действительно, разница в температурах воздуха у поверхности Земли между днем и ночью, экватором и полюсами, летом и зимой создается разницей в количестве приходящей солнечной радиации: чем больше это количество, тем выше температура; так нельзя ли допустить по аналогии, что в периоды с теплым климатом приходящая на Землю солнечная радиация была повышенной, а во время ледниковых периодов она снижалась (эту гипотезу предложил ирландский астроном Е. Эпик). Однако такое простое рассуждение может оказаться неверным, если небольшие повышения солнечной радиации будут приводить на Земле к увеличению испарения, росту облачности, усилению зимних снегопадов, замедлению снеготаяния из-за повышенной облачности и, как следствие, к росту ледников и понижению температуры (Г. Симпсон). Впрочем, большинство специалистов по эволюции звезд в противоположность Е. Эпику, считает, что Солнце и другие звезды такого же типа («желтые карлики» спектрального класса Г-2) имеют весьма стабильное излучение, мало меняющееся в течение времени порядка 10 млрд. лет (времени их пребывания на так называемой главной последовательности звезд на диаграмме светимость-цвет; см., например, главу 4 книги И. С. Шкловского [49]). Отметим, что не наблюдается и коротко-периодных колебаний суммарной светимости Солнца - идущий от него поток энергии, да среднем расстоянии Земли от Солнца составляющий (по так называемой американской шкале) 1.952 калории на 1 см2 в минуту, по-видимому, не испытывает сколько-нибудь заметных изменений во времени (и потому эта величина именуется солнечной постоянной).
По изложенным причинам в дальнейшем будут рассматриваться лишь факторы, не связанные с какими-либо изменениями в светимости Солнца. Представляется, что из таковых наиболее медленные изменения климата могли создаваться геохимической эволюцией гидросферы и атмосферы, а также приливной эволюцией системы Земля-Луна.
В главе 5 отмечалось, что температура на Земле, по-видимому, всегда оставалась в среднем в пределах существования жидкой воды. В течение истории Земли масса гидросферы росла со временем (см. кривую 2 на рис. 18), но для климата важнее не масса, а относительная площадь Мирового океана - чем она больше, тем более мягким («морским») будет климат на Земле в целом, т. е. тем меньше будет размах широтных изменений температуры воздуха и ее суточных, синоптических и годичных колебаний (яркой иллюстрацией разницы между морским и континентальным климатом может служить приводимая на рис. 64 карта амплитуд годичных колебаний температуры воздуха - эти амплитуды столь малы на океанах и столь велики на континентах, за исключением тропических лесов, что по изолиниям этих амплитуд в умеренных и высоких широтах можно восстановить положение континентов без указания на карте их береговой линии).

Рис. 64. Изолинии амплитуд годичных колебаний температуры воздуха на земном шаре.
Согласно данным главы 5, в катархее и архее площадь Мирового океана возрастала, а в нижнем протерозое менялась мало; затем она могла колебаться, так как параллельно с ростом массы гидросферы нарастала и континентальная кора; в фанерозое в среднем происходила регрессия моря, см. рис. 35 (так что океаны росли лишь в глубину). Таким образом, континенталъность климата в течение первых 2 млрд лет существования Земли уменьшалась, в нижнем протерозое менялась мало, в среднем и верхнем протерозое, возможно, колебалась, а в фанерозое нарастала (хотя и не монотонно, а с максимумами в теократические эпохи D1, Р-Т и N).
Из характеристик атмосферы для формирования климата важна, во-первых, суммарная масса атмосферы М, определяющая как ее механическую и тепловую инерцию, так и ее возможности как теплоносителя, способного переносить тепло от нагретых областей к охлажденным и тем самым частично выравнивать горизонтальные разности температур. Согласно теории подобия для циркуляции планетных атмосфер, созданной в последние годы крупным советским специалистом по гидрофизической гидродинамике Г. С. Голицыным [55], при не очень малой массе атмосферы (скажем, не менее одной тысячной современной) средние скорости ветра в ее нижних слоях и типичные горизонтальные разности температур (в том чирле средняя разность темцератур между экватором и полюсами) зависят от М по закону 1/(M)1/2. По этой причине на ранних стадиях формирования атмосферы, когда ее масса была, скажем, в 100 раз меньше современной (и была в этом смысле похожа на сегодняшнюю атмосферу Марса), скорости ветра в ней и разности температур между экватором и полюсами были вдесятеро больше современных, т. е. ветры были очень сильными, и на полюсах было очень холодно.