Форма, размеры, масса, моменты инерции, поле силы тяжести, магнитное поле, геотермический поток тепла. Сейсмическое зондирование. Оболочки Земли: атмосфера, гидросфера, земная кора (континентальная и океаническая), мантия (верхняя, включая литосферу и астеносферу, и нижняя), ядро (жидкое внешнее и твердое внутреннее)
Как уже говорилось, главное в истории планеты в целом - это эволюция ее внутренней структуры; под структурой мы имеем в виду изменения с глубиной химического состава планетного вещества, его фазового состояния (газообразного, жидкого или твердого, в последнем случае - вида кристаллической решетки) и физических характеристик, прежде всего давления, температуры и плотности, а затем также упругости, вязкости, электропроводности и т. п.
Чтобы разобраться в том, как изменялась в течение истории Земли ее внутренняя структура, удобнее всего начать с менее трудной задачи - выяснения внутренней структуры Земли в современную эпоху. Но и эта задача оказывается трудной, так как прямые наблюдения и измерения мы можем проводить только на поверхности Земли, в атмосфере (теперь и в космосе), гидросфере и на небольших, всего до нескольких километров, глубинах в шахтах и скважинах в земной коре; о более глубоких слоях Земли приходится судить лишь по косвенным данным.
С помощью астрономических наблюдений, а также измерений на поверхности Земли и в космосе удалось определить форму и размеры Земли, ее массу и моменты инерции, гравитационное и магнитное поля, тепловой поток из ее недр, химический состав и физические свойства веществ в самых верхних ее слоях. Представим себе условную поверхность постоянного потенциала силы тяжести, наиболее близкую к не возмущенной ветрами и течениями поверхности Мирового океана (силой тяжести называется равнодействующая силы собственного ньютоновского гравитационного притяжения и центробежной силы, создаваемой вращением Земли вокруг своей оси). Эта условная поверхность, называемая геоидом, очень близка к эллипсоиду вращения с экваториальным радиусом rэ=6378.16 км и полярным радиусом rп=6356.78 км, а потому со средним радиусом r=6371 км (радиус равновеликой сферы) и со сжатием е=(rэ - rп)/rэ. Отклонения геоида от этого референц-эллипсоида нигде не превосходят 100 м. Карта отклонений, приведенная на рис. 1, показывает, что геоид выше референц-эллипсоида в западной части Тихого, южной части Индийского и в северной части Атлантического океана и ниже референц-эллипсоида в Азии, Северной Америке и в тихоокеанском секторе Антарктиды.
Рис. 1. Карта высот геоида (м) над референц-эллипсоидом по Гапошкину
Масса Земли (М) равна 5.98·109 триллионов т, средняя масса 1 см3 вещества Земли оказывается равной 5.52 г. Поскольку измеряемая прямыми методами плотность горных пород вдвое меньше (средняя плотность земной коры принимается равной 2.8 г/см3), ясно, что вещество в глубоких недрах Земли должно иметь плотность заметно больше указанной средней цифры.
Момент инерции Земли составляет треть (точнее, 0.3308) от произведения ее массы на квадрат ее среднего радиуса. Точнее, момент инерции С относительно оси вращения вследствие сплюснутости Земли вдоль этой оси имеет немного большее значение, чем момент инерции А относительно какой-либо из экваториальных осей:
(С - А)/M·r2 ≈ 1.0826•10-3,
(С - А)/C ≈ 0.003273.
Ускорение силы тяжести на поверхности Земли удобно определять, приняв за единицу измерения 1 см/сек.2, такая единица в честь Галилея носит название «гал». Существующие измерительные приборы - гравиметры - вполне допускают измерения с точностью в одну тысячную гала (миллигал). Ускорение силы тяжести на экваторе в среднем равно gэ=978.049 гал; в него уже включено (со знаком минус) центробежное ускорение, создаваемое вращением Земли, которое равно 3.392 гал. На полюсах центробежное ускорение отсутствует, и полное ускорение силы тяжести gп оказывается больше, чем на экваторе:
(gп-gэ)/gэ ≈ 1/189.
Отклонения ускорения силы тяжести в различных точках поверхности Земли от их стандартных значений на поверхности референц-эллипсоида называются гравитационными аномалиями; они нередко составляют десятки и даже сотни миллигал.
Наблюдения над стрелками компасов показывают, что Земля обладает магнитным полем. Единицей измерения магнитной индукции служит гаусс; существующие приборы для измерения индукции геомагнитного поля - магнитометры - обеспечивают точность в 1 стотысячную долю гаусса (1 гамма). Измерения показали, что Земля является магнитом с южным полюсом (к которому притягивается северный конец стрелки компаса) около Гренландии (73° с. ш., 100° з. д.) и северным полюсом в австралийском секторе Антарктики (68° ю. ш., 143° в. д.), причем величина индукции геомагнитного поля максимальна у магнитных полюсов (она равна 0.7 гс у антарктического и 0.6 гс у гренландского полюсов) и минимальна вдоль магнитного экватора (где она меняется от 0.25 гс у восточных берегов Южной Америки до 0.42 гс в Индонезии; см. рис. 2).
Измерения в скважинах и шахтах на разных глубинах в континентальной земной коре показывают, что температура растет с глубиной со скоростью порядка 30 град./км; это так называемый геотермический градиент температуры. Умножив эту величину на коэффициент теплопроводности горных пород (порядка 0.005 кал./ см·сек.·град.), получим геотермический поток тепла. Измерения на суше дают для него значения (1.2 ÷ 1.6)·10-6 кал./см2·сек. Аналогичные значения, хотя и с гораздо большим разбросом, получаются и при измерениях в породах океанского дна (где разности температур на глубинах в десятки сантиметров под поверхностью дна измеряются при помощи так называемых термоградиентометров). Обычно за среднюю величину геотермического потока тепла принимают 1.5·10-6 кал./см2·сек.; для Земли в целом это дает ежегодную теплопотерю порядка 1028 эргов (Е. А. Любимова, [5]). Наименьшие значения геотермического потока тепла (0.9·10-6) наблюдаются на докембрийских щитах; в областях современного вулканизма (исключая сами вулканические очаги) он вырастает до 2.2·10-6, а наибольших значений, до 8·10-6, достигает около осей срединно-океанических хребтов.
Рис. 2. Карта изолиний величины индукции геомагнитного поля (гс) на 1945 г.
Однако для определения внутренней структуры Земли перечисленных данных недостаточно, нужны еще дополнительные данные. Их получают главным образом методом сейсмического зондирования земных недр. Кроме того, используются электромагнитное зондирование и наблюдения приливов и собственных колебаний в твердой Земле.
Сейсмическое зондирование проводится для измерения характеристик упругости вещества в недрах Земли. Речь идет о двух характеристиках. Во-первых, все реальные тела, твердые, жидкие или газообразные, при увеличении давления сжимаются, и по закону Гука относительное уменьшение их объема при сжатии пропорционально приращению давления; коэффициент пропорциональности, называемый модулем сжатия (К), - это первая из интересующих нас характеристик. Во-вторых, твердые тела под действием касательного напряжения на их поверхности испытывают деформацию сдвига, по закону Гука пропорциональную напряжению; коэффициент пропорциональности, называемый модулем сдвига или жесткостью (μ), - вторая характеристика упругости тела (у жидких или газообразных тел она равна нулю).
Если удается измерить модуль сжатия вещества на разных глубинах в недрах Земли, то распределение плотности и давления по глубине можно рассчитать, допуская, что недра Земли находятся хотя бы приблизительно в состоянии гидростатического равновесия, т. е. что давление на данной глубине равно весу вышележащего вещества (и в первом приближении пренебрегая малыми поправками на температурное расширение вещества). Детали такого расчета изложены, например, в книге В. Н. Жаркова, В. П. Трубицына и П. В. Самсоненко [6]; их результаты мы приведем ниже.
Измерению поддаются не сами модули К и μ в недрах Земли, а выражающиеся через них скорости ср= (К/ ρ + 4· μ /(3· ρ))1/2 и cs =( μ / ρ)1/2 продольных (Р) и поперечных (S) упругих волн, распространяющихся в недрах Земли от очагов землетрясений или сильных взрывов (здесь ρ - плотность вещества). Волны Р - это волны сжатия и разрежения (часто называемые звуковыми), в которых частицы среды колеблются вдоль направления движения волны; они способны распространяться и в твердых, и в жидких, и в газообразных средах. Волны S, в которых частицы среды колеблются поперек направления движения волны, могут распространяться только в твердых толах.
Непосредственно измеряются не скорости упругих волн ср и cs, а время их распространения от породивших их очагов до мест расположения сейсмографов, записывающих эти волны. При этом моменты времени и очаги землетрясений заранее неизвестны и должны быть рассчитаны задним числом по записям нескольких сейсмографов, расположенных в разных местах (в частности, это всегда относится к глубине очагов). Расчет скоростей ср и cs на разных глубинах по координатам очагов и времени распространения упругих волн - это сложная задача, решаемая лишь с некоторой степенью неопределенности. Несмотря на все эти осложнения, сейсмологией накоплено большое количество данных, позволяющих сформулировать основные представления о внутренней структуре современной Земли.
Согласно геофизическим данным, современная Земля состоит из следующих разнородных слоев (оболочек).
1) Атмосфера - внешняя газовая оболочка, ограниченная снизу твердой или жидкой подстилающей поверхностью.