Становилась ли она более устойчивой? Взглянув еще раз на геохронологическую шкалу, мы заметим, что скорее нет, чем да. При обсуждении этого вопроса неожиданно обнаружилась параллель с противоречивой «логикой устойчивости», которая зафиксирована в жизнедеятельности социальной системы. Напомню (см. формулы /I/ и /II/ , раздел 2.5), с ростом технологического потенциала увеличивалась внешняя устойчивость социума, и вместе с тем он становился чувствительнее к внутренним колебаниям.

Нечто похожее происходило и в эволюции биосферы. Вероятно, живое вещество на Земле имело больше шансов сохраниться, если бы очень мощное внешнее воздействие на планету произошло в фанерозое, чем в протерозое, так как сложные формы, разрушившись, составили бы защитный слой для простейших. Но у сложной системы ниже порог летального воздействия, т.е. в целом эволюционирующая система становилась уязвимее, о чем свидетельствуют и сокращающиеся сроки бескризисного существования [Буровский А.М., 2000].

Таким образом, чтобы оценить преимущество сложности, энергетической эффективности и интеллектуальности, нам опять, как и в социальной истории, необходим синергетический критерий: биосфера становилась не более устойчивой, но более неравновесной, т.е. способной сохранять устойчивость на более высоком уровне неравновесия со средой.

Следовательно, суждения в том духе, что человеческое общество – единственный в мире объект, сложность которого со временем возрастает, и что, соответственно, оно изначально эволюционировало «не туда», являются недоразумениями. В истории живой природы отчетливо прослеживаются те же векторы, которые мы наблюдаем в социальной и прасоциальной истории, причем направление векторов нельзя не признать достаточно странным как интуитивно, так и в рамках классического естествознания.

Тогда, может быть, правы те, кто полагают самое жизнь явлением клиническим, признаком старения Вселенной, «раковой опухолью на теле Материи»? Попробуем в этом разобраться…

[1] По мнению некоторых ученых, светимость Солнца все-таки увеличилась за 4 млрд. лет на 25% [Казанский А.Б., 2003], но это несопоставимо с ростом энергетического «выхода». Отложенная же солнечная энергия в виде нефти, газа, угля вернулась в активный энергетический круговорот лишь в последние два-три столетия. Прежде накапливаемые в земной коре соединения углерода могли играть, по большей части, деструктивную роль (см. далее).

[2] По поводу видового разнообразия требуется оговорка. Согласно данным палеонтологии, оно достигло максимума во второй половине миоцена, 12 – 6 млн. лет назад, после чего начало сокращаться. В последующем большее распространение получали организмы с невысоким уровнем специализации, и «главным условием эволюционного успеха стал прогресс в использовании информационных потоков экосистемы» [Жегалло В.И., Смирнов Ю.А., 1999, с.29]. С появлением же антропоценозов их совокупное разнообразие росло уже за счет антропогенного ограничения разнообразия природных подсистем. Далее мы к этому вернемся.

3.1.3. “Набухающая” Вселенная

Развитие Вселенной с момента ее возникновения выглядит как непрерывная последовательность нарушений симметрии… Феномен жизни естественно вписывается в эту картину.

Дж. Дайсон

Живые организмы – это объекты, далекие от равновесия и отделенные от него неустойчивостями.

И. Пригожин

Наши тела состоят из пепла давно угасших звезд.

Дж. Джинс

Отвечая на вопрос, которым завершился предыдущий подраздел, сразу подчеркнем, что догадка о чужеродности биосферы и ее истории физическому миру и прежней истории Вселенной так же безосновательна, как и подозрение о патологическом характере социальной эволюции. Массив естественнонаучных данных свидетельствует об ином.

Геологи утверждают, что еще до возникновения жизни в литосфере нашей планеты процессы развивались «по пути все большего удаления природных минеральных объектов (по составу и структуре) от усредненных по земной коре» [Голубев В.С., 1992, с.6-7]. Формировалась подвижная зона оруднения с признаками устойчивого неравновесия относительно окружающей среды и механизмами защиты от уравновешивающего внешнего давления. На базе неорганических полимеров образовались геологические формации и рудные месторождения – самые высокоорганизованные тела неживой природы [Ростовская М.Н., 1996].

Биохимики, со своей стороны, предположительно связывают возникновение протожизни с серией последовательных флуктуаций, вызванных неустойчивыми состояниями [Пригожин И., 1985], – например, спонтанной самоорганизацией органических микросистем в сильно неравновесных гидротермальных условиях [Компаниченко В.Н., 1996].

Не является ли, в таком случае, сама Земля аномальным космическим объектом? Чтобы отвергнуть и такое подозрение, обратим внимание на то, какие последовательные превращения мега-, макро- и микроструктур Вселенной предшествовали образованию Солнечной системы.

Слабые возмущения в однородной материи ранней Метагалактики обернулись выраженной анизотропией с формированием галактик и звезд. Еще ранее началась длинная цепь эволюционных трансформаций в микромире. Согласно «стандартной» космологической модели, уже в первые секунды после Большого Взрыва происходило первичное образование нуклонов из «моря кварков», за которым последовал процесс «атомизации» Вселенной; наконец, в недрах звезд первого поколения при высоких температуре и давлении синтезировались ядра тяжелых элементов, составивших в последующем основу органических молекул и систем высшего химизма [Девис П., 1985], [Редже Т., 1985], [Padmanabhan T., 1998]. Из «пепла» этих звезд, завершивших свое существование взрывами, и состоят наши тела (это поэтичное высказывание английского астрофизика, приведенное в эпиграфе, цитирует его коллега П. Девис [1985]).

Еще до возникновения Земли космическое пространство наполнялось «предбиологическими» углеродными соединениями с очень сложной структурой. Это длинные цепи различной конфигурации, которые уже приобрели способность гибко взаимодействовать со средой, сохраняя в неизменности основной субстрат, регулировать собственные реакции, добывать свободную энергию, конкурировать за нее и использовать для антиэнтропийной работы. Химики обнаруживают у таких систем признаки селективного и опережающего отражения, «устойчивой индивидуальности» и указывают на трудности выделения функциональных различий между ними и простейшими живыми организмами [Жданов Ю.А., 1968, 1983], [Шноль С. Э., 1979], [Романовский Ю.М., 1982], [Руденко А.П., 1983, 1986].

Органические молекулы формировались в космических облаках, кометах, атмосферах планет-гигантов и их спутников и т.д., и, по данным радиоастрономии, широко распространились в космосе [Аскано-Араухо А., Оро Дж., 1984].

Имеется, правда, повод для сомнений в «нормальности» той космической зоны, в которой возникла и развивалась известная нам жизнь. Такой повод дали новейшие открытия астрономии.

Еще Дж. Бруно был убежден, что каждая звезда, подобно Солнцу, окружена вращающимися вокруг нее планетами. Но на протяжении столетий это оставалось правдоподобным предположением, не подтвержденным прямыми наблюдениями. Как отмечалось (подраздел 3.1.2), только в 90-х годах ХХ века было впервые зафиксировано наличие планет за пределами Солнечной системы – экзопланет. Этот триумф науки вызвал, однако, неожиданную растерянность. «Чем больше мы узнаем об экзопланетах, тем меньше понимаем Солнечную систему», – говорил известный астроном Л.В. Ксанфомалити в марте 2002 года на конференции в Государственном Астрономическом институте им. П.К. Штернберга.

Дело в том, что планетные системы соседних звезд построены несколько иначе и, в некотором смысле, более «естественно»: крупные планеты расположены ближе к центру, чем мелкие. У нас же отчего-то все получилось наоборот, так что орбиты самых маленьких планет – Меркурия, Венеры, Земли и Марса – находятся ближе к Солнцу, чем орбиты планет-гигантов.


Перейти на страницу:
Изменить размер шрифта: