Объём производства термопластов с повышенной теплостойкостью и органических стекол составляет около 10% общего объёма всех полимеров, предназначенных для изготовления П. м.
Отсутствие реакций отверждения во время формования термопластов даёт возможность предельно интенсифицировать процесс переработки. Основные методы формования изделий из термопластов — литьё под давлением, экструзия, вакуумформование и пневмоформование. Поскольку вязкость расплава высокомолекулярных полимеров велика, формование термопластов на литьевых машинах или экструдерах требует удельных давлений 30—130 Мн/м = (300—1300 кгс/см2).
Дальнейшее развитие производства термопластов направлено на создание материалов из тех же полимеров, но с новыми сочетаниями свойств, применением эластификаторов, порошковых и коротковолокнистых наполнителей.
Основные виды реактопластов. После окончания формования изделий из реактопластов полимерная фаза приобретает сетчатую (трёхмерную) структуру. Благодаря этому отверждённые реактопласты имеют более высокие, чем термопласты, показатели по твёрдости, модулю упругости, теплостойкости, усталостной прочности, более низкий коэффициент термического расширения; при этом свойства отверждённых реактопластов не столь резко зависят от температуры. Однако неспособность отвержденных реактопластов переходить в вязкотекучее состояние вынуждает проводить синтез полимера в несколько стадий.
Первую стадию оканчивают получением олигомеров (смол) — полимеров с молекулярной массой 500—1000. Благодаря низкой вязкости раствора или расплава смолу легко распределить по поверхности частиц наполнителя даже в том случае, когда степень наполнения достигает 80—85% (по массе). После введения всех компонентов текучесть реактопласта остаётся настолько высокой, что изделия из него можно формовать заливкой (литьём), контактным формованием, намоткой. Такие реактопласты называются премиксами в том случае, когда они содержат наполнитель в виде мелких частиц, и препрегами, если наполнителем являются непрерывные волокна, ткань, бумага. Технологическая оснастка для формования изделий из премиксов и препрегов проста и энергетические затраты невелики, но процессы связаны с выдержкой материала в индивидуальных формах для отверждения связующего. Если смола отверждается по реакции поликонденсации, то формование изделий сопровождается сильной усадкой материала и в нём возникают значительные остаточные напряжения, а монолитность, плотность и прочность далеко не достигают предельных значений (за исключением изделий, полученных намоткой с натяжением). Чтобы избежать этих недостатков, в технологии изготовления изделий из смол, отверждающихся по реакции поликонденсации, предусмотрена дополнительная стадия (после смешения компонентов) — предотверждение связующего, осуществляемое при вальцевании или сушке. При этом сокращается длительность последующей выдержки материала в формах и повышается качество изделий, однако заполнение форм из-за понижения текучести связующего становится возможным только при давлениях 25—60 Мн/м2 (250—600 кгс/см2).
Смола в реактопластах может отверждаться самопроизвольно (чем выше температура, тем больше скорость) или с помощью полифункционального низкомолекулярного вещества — отвердителя.
Реактопласты с любым наполнителем изготавливают, применяя в качестве связующего феноло-альдегидные смолы, часто эластифицированные поливинилбутиралем (см. Поливинилацетали), бутадиен-нитрильным каучуком, полиамидами, поливинилхлоридом (такие материалы называют фенопластами), и эпоксидные смолы, иногда модифицированные феноло- или анилино-формальдегидными смолами или отверждающимися олигоэфирами.
Высокопрочные П. м. с термостойкостью до 200 °С производят, сочетая стеклянные волокна или ткани с отверждающимися олигоэфирами, феноло-формальдегидными или эпоксидными смолами. В производстве изделий, длительно работающих при 300 °С, применяют стеклопластики или асбопластики с кремнийорганическим связующим; при 300—340 °С — полиимиды в сочетании с кремнезёмными, асбестовыми или углеродными волокнами; при 250—500 °С в воздушной и при 2000—2500 °С в инертной средах — фенопласты или пластики на основе полиамидов, наполненные углеродным волокном и подвергнутые карбонизации (графитации) после формования изделий.
Высокомодульные П. м. [модуль упругости 250—350 Гн/м2 (25 000—35 000 кгс/мм2)} производят, сочетая эпоксидные смолы с углеродными, борными или монокристаллическими волокнами (см. также Композиционные материалы). Монолитные и лёгкие П. м., устойчивые к вибрационным и ударным нагрузкам, водостойкие и сохраняющие диэлектрические свойства и герметичность в условиях сложного нагружения, изготавливают, сочетая эпоксидные, полиэфирные или меламино-формальдегидные смолы с синтетическими волокнами или тканями, бумагой из этих волокон.
Наиболее высокие диэлектрические свойства (диэлектрическая проницаемость 3,5—4,0) характерны для материалов на основе кварцевых волокон и полиэфирных или кремнийорганических связующих.
Древесно-слоистые пластики широко используют в промышленности стройматериалов и в судостроении.
Объём производства и структура потребления пластмасс. Пластические материалы на основе природных смол (канифоли, шеллака, битумов и др.) известны с древних времён. Старейшей П. м., приготовленной из искусственного полимера — нитрата целлюлозы, является целлулоид, производство которого было начато в США в 1872. В 1906—10 в России и Германии в опытном производстве налаживается выпуск первых реактопластов — материалов на основе феноло-формальдегидной смолы. В 30-х гг. в СССР, США, Германии и др. промышленно развитых странах организуется производство термопластов — поливинилхлорида, полиметилметакрилата, полиамидов, полистирола. Однако бурное развитие промышленности пластмасс началось только после 2-й мировой войны 1939—45. В 50-х гг. во многих странах начинается выпуск самой крупнотоннажной П. м.— полиэтилена.
В СССР становление промышленности П. м. как самостоятельной отрасли относится к периоду довоенных пятилеток (1929—40). Производство пластмасс составило (в тыс. т): в 1940 — 24, в 1950 — 75, в 1960 — 312, в 1970 — 1673, в 1973 — около 2300. Основные предприятия сосредоточены в Европейской части (84% общесоюзного производства П. м.). К их числу относятся орехово-зуевский завод «Карболит», Казанский завод органического синтеза, Полоцкий химический комбинат, Свердловский завод пластмасс, Владимирский химический завод, Горловский химический комбинат, Московский нефтеперерабатывающий завод. В перспективе в связи с созданием крупнейших Томского и Тобольского нефтехимических комплексов на базе Тюменских нефтяных месторождений, развитием Омского нефтехимического комплекса и соответствующих заводов пластмасс около 30% их производства будет приходиться на восточные районы. Основные действующие предприятия в этих районах — кемеровский завод «Карболит», Тюменский завод пластмасс.
Производство П. м. в 1973 в некоторых капиталистических промышленно развитых странах характеризуется следующими данными (в тыс. т): США — 13200, Япония — 6500, ФРГ — 6500, Франция — 2500, Италия — 2300, Великобритания — 1900.
В 1973 мировое производство полимеров для П. м. достигло ~ 43 млн. т. Из них около 75% приходилось на долю термопластов (25% полиэтилена, 20% поливинилхлорида, 14% полистирола и его производных, 16% прочих пластиков). Существует тенденция к дальнейшему увеличению доли термопластов (в основном полиэтилена) в общем производстве П. м.