Хотя доля термореактивных смол в общем выпуске полимеров для П. м. составляет всего около 25%, фактически объём производства реактопластов выше, чем термопластов, из-за высокой степени наполнения (60—80%) смолы.

  Применение П. м. в различных областях техники характеризуют данные (табл. 2).

  Производство П. м. развивается значительно интенсивнее, чем таких традиционных конструкционных материалов, как чугун и алюминий (табл. 3).

  Потребление П. м. в строительстве непрерывно возрастает. При увеличении мирового производства П. м. в 1960—70 примерно в 4 раза объём их потребления в строительстве возрос в 8 раз. Это обусловлено не только уникальными физико-механическими свойствами полимеров, но также и их ценными архитектурно-строительными характеристиками. Основные преимущества П. м. перед др. строительными материалами — лёгкость и сравнительно большая удельная прочность. Благодаря этому может быть существенно уменьшена масса строительных конструкций, что является важнейшей проблемой современного индустриального строительства. Наиболее широко П. м. (главным образом рулонные и плиточные материалы) используют для покрытия полов и др. отделочных работ (см. также Полимербетон), герметизации, гидро- и теплоизоляции зданий, в производстве труб и санитарно-технического оборудования. Их применяют и в виде стеновых панелей, перегородок, элементов кровельных покрытий (в т. ч. светопрозрачных), оконных переплётов, дверей, пневматических строительных конструкций, домиков для туристов, летних павильонов и др.

  П. м. занимают одно из ведущих мест среди конструкционных материалов машиностроения. Потребление их в этой отрасли становится соизмеримым (в единицах объёма) с потреблением стали. Целесообразность использования П. м. в машиностроении определяется прежде всего возможностью удешевления продукции. При этом улучшаются также важнейшие технико-экономические параметры машин — уменьшается масса, повышаются долговечность, надёжность и др. Из П. м. изготовляют зубчатые и червячные колёса, шкивы, подшипники, ролики, направляющие станков, трубы, болты, гайки, широкий ассортимент технологической оснастки и др.

  Основные достоинства П. м., обусловливающие их широкое применение в авиастроении,— лёгкость, возможность изменять технические свойства в большом диапазоне. За период 1940—70 число авиационных деталей из П. м. увеличилось от 25 до 10 000. Наибольший прогресс в использовании полимеров достигнут при создании лёгких самолётов и вертолётов. Тенденция ко всё более широкому их применению характерна также для производства ракет и космических аппаратов, в которых масса деталей из П. м. может составлять 50% от общей массы аппарата. С использованием реактопластов изготовляют реактивные двигатели, силовые агрегаты самолётов (оперение, крылья, фюзеляж и др.), корпуса ракет, колёса, стойки шасси, несущие винты вертолётов, элементы тепловой защиты, подвесные топливные баки и др. Термопласты применяют в производстве элементов остекления, антенных обтекателей, при декоративной отделке интерьеров самолётов и др., пено- и сотопласты — как заполнители высоконагруженных трёхслойных конструкций.

  Области применения П. м. в судостроении очень разнообразны, а перспективы использования практически неограничены. Их применяют для изготовления корпусов судов и корпусных конструкций (главным образом стеклопластики), в производстве деталей судовых механизмов, приборов, для отделки помещений, их тепло-, звуко- и гидроизоляции.

  В автомобилестроении особенно большую перспективу имеет применение П. м. для изготовления кабин, кузовов и их крупногабаритных деталей, т.к. на долю кузова приходится около половины массы автомобиля и ~ 40% его стоимости. Кузова из П. м. более надёжны и долговечны, чем металлические, а их ремонт дешевле и проще. Однако П. м. не получили ещё большого распространения в производстве крупногабаритных деталей автомобиля, главным образом из-за недостаточной жёсткости и сравнительно невысокой атмосферостойкости. Наиболее широко П. м. применяют для внутренней отделки салона автомобиля. Из них изготовляют также детали двигателя, трансмиссии, шасси. Огромное значение, которое П. м. играют в электротехнике, определяется тем, что они являются основой или обязательным компонентом всех элементов изоляции электрических машин, аппаратов и кабельных изделий. П. м. часто применяют и для защиты изоляции от механических воздействий и агрессивных сред, для изготовления конструкционных материалов и др.

  Тенденция ко всё более широкому применению П. м. (особенно плёночных материалов, см. Плёнки полимерные) характерна для всех стран с развитым сельским хозяйством. Их используют при строительстве культивационных сооружений, для мульчирования почвы, дражирования семян, упаковки и хранения с.-х. продукции и т.д. В мелиорации и с.-х. водоснабжении полимерные плёнки служат экранами, предотвращающими потерю воды на фильтрацию из оросительных каналов и водоёмов; из П. м. изготовляют трубы различного назначения, используют их в строительстве водохозяйственных сооружений и др.

  В медицинской промышленности применение П. м. позволяет осуществлять серийный выпуск инструментов, специальной посуды и различных видов упаковки для лекарств. В хирургии используют пластмассовые клапаны сердца, протезы конечностей, ортопедические вкладки, туторы, стоматологические протезы, хрусталики глаза и др.

  Лит.: Энциклопедия полимеров, т, 1—2, М., 1972—74; Технология пластических масс, под ред. В. В. Коршака, М., 1972; Лосев И. П., Тростянская Е. Б., Химия синтетических полимеров, 3 изд., М., 1971; Пластики конструкционного назначения, под ред. Е. Б. Тростянской, М., 1974.

  Е. Б. Тростянская.

  Табл. 1.—Свойства пластмасс.

Основные компоненты гсм3 Термо-стойкость, ° С Мн/м2 кгс/мм2Гн/м2 (кгс/мм2кдж/м2Мн/м2 кгс/мм2
полимер наполнитель при разрыве при сжатии при изгибе
Термопласты
Полиэтилен 0,945 60—80 45—60 (4,5—6,0) 0,4—0,55 (40—55) Не разру-шается 20—40 (2—4) 40—80 (4—8) 20—30 (2—3)
Поливинил-хлорид 1,38 60—70 130—160 (13—16) 3—4 (300—400) 100—120 40—60 (4—6) 80—120 (8—12) 80—120 (8—12)
Полистирол 1,047 75—85 140—150 (14—15) 3—4 (300—400) 10—15 35—40 (3,5—4) 80—110 (8—11) 80—90 (8—9)
Полистирол Эластомер 1,03 70—80 110—120 (11—12) 1,8—2,5 (180—250) 25—35 27—30 (2,7—3) 40—50 (4—5)
Полистирол lмм 1,4 100—110 180—190 (18—19) 6,8—8 (680—800) 17—20 70—80 (7—8) 100—120 (10—12)
Полиамид-6 1,14 60—70 100—120 (10—12) 2,3—2,8 (230—280) 10—170 60—90 (6—9) 50—65 (5—6,5) 90—140 (9—14)
Полиамид-6 lмм 1,35 120—130 200—250 (20—25) 8,4 (840) 20—40 180 (18) 180—200 (18—20) 200—280 (20—28)
Поликарбонат 1,2 110—130 150—160 (15—16) 2,2—2,6 (220—260) 120—140 50—75 (5—75) 80—85 (8—8,5) 80—100 (8—10)
Поликарбонат l мм 1,42 200—220 250—280 (25—28) 6,5—7,5 (650—750) 90—110 80—90 (8—9) 100—110 (10—11) 140—150 (14—15)
Реактопласты
Отвержденная феноло-фор-мальдегид- ная смола 110—130 220—250 (22—25) 3—4 (300—400) 3—4 30—50 (3—5)
То же Древесная мука (50% по массе) 1,4 100 200—240 (20—24) 7—8 (700—800) 4—4,5 40—50 (4—5) 150 (15) 60—70 (6—7)
То же Кварцевая мука (50% по массе) 1,9 150 8—10 (800—1000) 3—3,5 40—50 (4—5) 60—70 (6—7) 60—80 (6—8)
То же Асбестовое волокно (50% по массе) 1,85 200—250 16—25 (1600—2500) 21 50—70 (5—7) 100—110 (10—11) 80 (8)
То же Древесный шпон (75% по массе) 1,3 125 200—240 (20—24) 28 (2800) 80 250—280 (25—28) 160—180 (16—18) 260—280 (26—28)
Отвержденная эпоксидная смола 1,27 160—180 (16—18) 3—3,5 (300—350) 60—70 (6—7)
То же Стекловолокно непрерывное однонаправленное (70% по массе) 2,1 160—180 50—56 (5000—5600) 100—140 1800—2000 (180—200) 1200—1400 (120—140) 2000—200 (200—220)
То же Стеклоткань (70% по массе) 1,79—1,94 120—160 22—31 (2200—3100) 450—480 (45—48) 450—500 (45—50) 650—700 (65—70)
То же Углеродное волокно непрерывное однонаправленное (60% по массе) 1,52 160—200 180—230 (18000—23000) 40—50 1000—1200 (100—120) 600—800 (60—80) 800—1000 (80—100)
То же Полибензимидазольное волокно непрерывное однонаправленное (60% по массе) 1,36 180—200 120—150 (12000—15000) 200—250 (20—25) 300—350 (30—35) 500—600 (50—60)
То же Стекловолокно, хаотичное распределение (70% по массе) 1,7—1,85 130—180 (13—18) 100—130 (10—13) 240—300 (24—30)

Перейти на страницу:
Изменить размер шрифта: