Детальным изучением процессов обмена азотистых веществ в растении, результаты которого привели к коренным изменениям в практике применения азотсодержащих удобрений, наука обязана сов. агрохимику Д. Н. Прянишникову. Большое значение имели работы Прянишникова и его школы в области фосфорного и калийного питания растений, известкования почв и во многих др. областях физиологии минерального питания. Важную роль сыграли работы его учеников. Г. Г. Петров детально изучил процессы метаболизма азота в растении в зависимости от условий освещения, И. С. Шулов создал ряд вариантов вегетационного метода (метод текучих растворов, стирильных культур и др.), с помощью которых он доказал способность корней растений ассимилировать органические соединения, в том числе и некоторые белковые соединения, Ф. В. Чириков исследовал физиологические особенности с.-х. растений, различающихся по способности усваивать труднорастворимые формы фосфатов почвы. В области водообмена и засухоустойчивости растений фундаментальные работы принадлежат Н. А. Максимову. На основе работ в области физиологии микроорганизмов, среди которых особое место принадлежит открытию С. Н. Виноградским хемосинтеза (1887), стали всё более четко вырисовываться закономерности круговорота отдельных элементов в природе, выявляться роль в этом процессе растений и их симбиотических взаимоотношений с микрофлорой почвы.

  Современное состояние и достижения Ф. р. К числу принципиально важных достижений современной Ф. р. относится расшифровка тонких механизмов, регулирующему влиянию которых подчинён энергетический обмен зелёного растения. Т. о. выяснено, что фотосинтез и дыхание представляют собой две стороны единого процесса обмена веществ и энергии. Установлена роль биохимических процессов дыхания как источника промежуточных продуктов, используемых клеткой для синтеза основных структурных и физиологически активных компонентов протоплазмы. По своему значению дыхание в определённых условиях аналогично фотосинтезу, т.к. в отсутствие фотосинтеза растения могут усваивать питательные вещества только в результате окислительно-восстановительных превращений, осуществляемых при дыхании. Достигнуты успехи в раскрытии природы физико-химических и биохимических процессов, участвующих в поглощении световой энергии, преобразовании этой энергии в химическую и её запасании в форме богатых энергией, т. н. макроэргических соединений, выполняющих роль биологического «горючего». Большую роль в изучении этих проблем Ф. р. сыграли работы ряда советских и зарубежных учёных – немецких  О. Варбурга, Г. Виланда, английского Д. Кейлина, шведского Х. Теорелля, английского  Х. А. Кребса, венгерского А. Сент-Дьёрдьи, советскиого Я. О. Парнаса, Д. М. Михлина, фьериканского М. Гиббса и др. Принципиально важные успехи достигнуты при изучении строения и физико-химических свойств и путей биосинтеза фотосинтетических пигментов, их метаболизма и механизмов осуществляемых ими функций. Достижения в области изучения пигментов выразились в открытии нескольких видов фотофосфорилирования (циклическое, нециклическое, псевдоциклическое, амер. учёный Д. И. Арнон и др.), расшифровке механизмов первичных этапов поглощения кванта света (советские ученые А. Н. Теренин, американские Б. Чанс, Л. Н. М. Дьюйзенс), выяснении путей биосинтеза хлорофиллов (сов. исследователь Т. Н. Годнев, амереканский– Е. Рабинович и др.), раскрытии биохимических механизмов и путей темновой стадии фотосинтеза (амереканским учёный М. Калвин, австралийским М. Д. Хетч. С. Р. Слэк, советским Ю. С. Карпилов). Теоретическое значение этих исследований состоит в утверждении принципа альтернативности, взаимозаменяемости, который лежит в основе организации всех физиологических функций и регуляторных систем растительного организма. Соотношение циклического, нециклического или псевдоциклического путей фотофосфорилирования в онтогенезе зависит от внешних условий (например, освещения) и т.д. Установлено существование одно-, двух- и, возможно, даже трёхквантового механизмов фотосинтеза. Наряду с эволюционно наиболее древним анаэробным путём окислительного энергообмена (гликолиз) существуют пути аэробного окисления (цикл трикарбоновых кислот, глиоксилатный цикл, пентозофосфатный цикл). Соотношение между ними также непостоянно и зависит от вида растения и условий его развития (парциальное давление O2 в атмосфере, температура, свет). Важное событие в современной Ф. р. – открытие новой специфической функции энергообмена зелёного растения – фотодыхания, т. е. индуцируемого светом поглощения зелёной клеткой кислорода, сопровождающегося выделением CO2. С фотодыханием, по-видимому, в значительной мере связана эффективность использования растением света, чистая продуктивность фотосинтеза и общая продуктивность растения.

  Изучение индивидуального развития растительного организма (его онтогенеза) и природы регулирующих его факторов показало, что наряду с условиями внешней среды мощное влияние на развитие растения оказывают содержащиеся в его тканях фитогормоны – ауксины, гиббереллины, цитокинины. Открытие этих веществ дало толчок изучению с новых позиций ростовых процессов, перехода растения от вегетативной к генеративной фазе развития. Выявлена важнейшая роль в регуляции общего хода развития растений, выполняемая корневыми системами, в тканях которых осуществляется синтез гиббереллинов и цитокининов. Наряду со стимуляторами в растениях обнаружены соединения, тормозящие рост и развитие. Так, процессы прорастания семян, покой зимующих почек и т.п. регулирует ингибитор абсцизовая кислота.

  Выявлено также, что ряд физиологических процессов регулируется фитохромом (например, прорастание семян, удлинение и разгибание гипокотиля, образование листовых зачатков, дифференцировка первичных листьев, элементов ксилемы, устьиц и т.д.). Доказана индукция фитохромом биосинтеза ферментов, участвующих в образовании хлорофилла, формировании хлоропласта и фотосинтетического аппарата в целом. Обнаружены также др. вещества – компоненты группы фитохромов, по-видимому регулирующие реакции фототропизма, фотопериодизма и некоторые др. Работы в этой области Ф. р. открывают принципиально новые стороны, характеризующие общерегуляторную роль света в жизнедеятельности растения.

  Принципиально важные факты получены в исследованиях по проблемам корневого питания растений. Изучение поглотительной деятельности корней и превращений, которым подвергаются в их тканях минеральные вещества, воспринятые ими из почвы, позволило открыть способность корневых систем осуществлять синтезы важных в физиологическом отношении соединений (аминокислот, нуклеиновых кислот, витаминов, ауксинов и др.). Установлена способность корней самостоятельно, без связи с деятельностью листьев, синтезировать хлорофилл. Т. о., выяснена роль корневой системы как одного из регуляторов деятельности листьев и формирования аппарата фотосинтеза. В области минерального питания растений выявлены механизмы, регулирующие поглотительную деятельность корневых систем, взаимосвязи минерального питания и водообмена растений. Получены ценные факты о роли отдельных минеральных элементов в обмене веществ растения и, в частности, ряда микроэлементов, физиологическое действие которых обусловлено прежде всего их участием в построении многих ферментных систем. Успешно развиваются исследования в области физиологии клетки – о функциях органоидов протоплазмы, строении клеточных мембран и их роли в процессах поглощения, транспорта и выделения ионов. Большое практическое значение имеют исследования физиологической природы устойчивости растений к различного рода неблагоприятным абиотическим (высокие и низкие температуры, засуха, избыточное увлажнение, засоление и др.) и биологическим (иммунитет к болезням и вредителям-насекомым) факторам. Результаты этих исследований всё более широко используются в селекции, в разработке приёмов повышения устойчивости растений, служат основой закаливания растений. Наряду с успешным решением проблем общей Ф. р. всё большее внимание уделяется развитию исследований по физиологии отдельных видов и сортов с.-х. растений. Связано это с тем, что урожайность растений, их способность продуктивно использовать питательные вещества, влагу, свет и прочее зависят от взаимоотношения всех функций растений на разных этапах и в различных условиях развития. Этим определяется не только теоретическая, но и практическая ценность исследования по частной Ф. р.


Перейти на страницу:
Изменить размер шрифта: