When he was an old man, von Frisch's most famous work – on the dance of the bees, which we discussed in the last chapter – was called into question by an American biologist {100} named Adrian Wenner. Fortunately, von Frisch lived long enough to see his work vindicated by another American, James L. Gould, now at Princeton, in one of the most brilliantly conceived experiments of all biology. I'll briefly tell the story, because it is relevant to my point about the power of the “as if designed” assumption.

Wenner and his colleagues did not deny that the dance happens. They did not even deny that it contains all the information von Frisch said it did. What they did deny is that other bees read the dance. Yes, Wenner said, it is true that the direction of the straight run of the waggle dance relative to the vertical is related to the direction of food relative to the sun. But no, other bees don't receive this information from the dance. Yes, it is true that the rates of various things in the dance can be read as information about the distance of food. But there is no good evidence that the other bees read the information. They could be ignoring it. Von Frisch's evidence, the skeptics said, was flawed, and when they repeated his experiments with proper “controls” (that is, by taking care of alternative means by which bees might find food), the experiments no longer supported von Frisch's dance-language hypothesis.

This was where Jim Gould came into the story with his exquisitely ingenious experiments. Gould exploited a long-known fact about honeybees, which you will remember from the previous chapter. Although they usually dance in the dark, using the straight-up direction in the vertical plane as a coded token of the sun's direction in the horizontal plane, they will effortlessly switch to a possibly more ancestral way of doing things if you turn on a light inside the hive. They then forget all about gravity and use the lightbulb as their {101} token sun, allowing it to determine the angle of the dance directly. Fortunately, no misunderstandings arise when the dancer switches her allegiance from gravity to the lightbulb. The other bees “reading” the dance switch their allegiance in the same way, so the dance still carries the same meaning: the other bees still head off looking for food in the direction the dancer intended.

Now for Jim Gould's masterstroke. He painted a dancing bee's eyes over with black shellac, so that she couldn't see the lightbulb. She therefore danced using the normal gravity convention. But the other bees following her dance, not being blindfolded, could see the lightbulb. They interpreted the dance as if the gravity convention had been dropped and replaced by the lightbulb “sun” convention. The dance followers measured the angle of the dance relative to the light, whereas the dancer herself was aligning it relative to gravity. Gould was, in effect, forcing the dancing bee to lie about the direction of the food. Not just lie in a general sense, but lie in a particular direction that Gould could precisely manipulate. He did the experiment not with just one blindfolded bee, of course, but with a proper statistical sample of bees and variously manipulated angles. And it worked. Von Frisch's original dance-language hypothesis was triumphantly vindicated.

I didn't tell this story for fun. I wanted to make a point about the negative as well as the positive aspects of the assumption of good design. When I first read the skeptical papers of Wenner and his colleagues, I was openly derisive. And this was not a good thing to be, even though Wenner eventually turned out to be wrong. My derision was based entirely on the “good design” assumption. Wenner was not, {102} after all, denying that the dance happened, nor that it embodied all the information von Frisch had claimed about the distance and direction of food. Wenner simply denied that the other bees read the information. And this was too much for me and many other Darwinian biologists to stomach. The dance was so complicated, so richly contrived, so finely tuned to its apparent purpose of informing other bees of the distance and direction of food. This fine tuning could not have come about, in our view, other than by natural selection. In a way, we fell into the same trap as creationists do when they contemplate the wonders of life. The dance simply had to be doing something useful, and this presumably meant helping foragers to find food. Moreover, those very aspects of the dance that were so finely tuned – the relationship of its angle and speed to the direction and distance of food – had to be doing something useful too. Therefore, in our view, Wenner just had to be wrong. So confident was I that, even if I had been ingenious enough to think of Gould's blindfold experiment (which I certainly wasn't), I would not have bothered to do it.

Gould not only was ingenious enough to think of the experiment but he also bothered to do it, because he was not seduced by the good-design assumption. It is a fine tightrope we are walking, however, because I suspect that Gould – like von Frisch before him, in his color research – had enough of the good-design assumption in his head to believe that his remarkable experiment had a respectable chance of success and was therefore worth spending time and effort on.

I now want to introduce two technical terms, “reverse engineering” and “utility function.” In this section, I am influenced {103} by Daniel Dennett's superb book Darwin's Dangerous Idea. Reverse engineering is a technique of reasoning that works like this. You are an engineer, confronted with an artifact you have found and don't understand. You make the working assumption that it was designed for some purpose. You dissect and analyze the object with a view to working out what problem it would be good at solving: “If I had wanted to make a machine to do so-and-so, would I have made it like this? Or is the object better explained as a machine designed to do such-and-such?”

The slide rule, talisman until recently of the honorable profession of engineer, is in the electronic age as obsolete as any Bronze Age relic. An archaeologist of the future, finding a slide rule and wondering about it, might note that it is handy for drawing straight lines or for buttering bread. But to assume that either of these was its original purpose violates the economy assumption. A mere straight-edge or butter knife would not have needed a sliding member in the middle of the rule. Moreover, if you examine the spacing of the graticules you find precise logarithmic scales, too meticulously disposed to be accidental. It would dawn on the archaeologist that, in an age before electronic calculators, this pattern would constitute an ingenious trick for rapid multiplication and division. The mystery of the slide rule would be solved by reverse engineering, employing the assumption of intelligent and economical design.

“Utility function” is a technical term not of engineers but of economists. It means “that which is maximized.” Economic planners and social engineers are rather like architects and real engineers in that they strive to maximize something. Utilitarians strive to maximize “the greatest happiness for the {104} greatest number” (a phrase that sounds more intelligent than it is, by the way). Under this umbrella, the utilitarian may give long-term stability more or less priority at the expense of short-term happiness, and utilitarians differ over whether they measure “happiness” by monetary wealth, job satisfaction, cultural fulfillment or personal relationships. Others avowedly maximize their own happiness at the expense of the common welfare, and they may dignify their egoism by a philosophy that states that general happiness will be maximized if one takes care of oneself. By watching the behavior of individuals throughout their lives, you should be able to reverse-engineer their utility functions. If you reverse-engineer the behavior of a country's government, you may conclude that what is being maximized is employment and universal welfare. For another country, the utility function may turn out to be the continued power of the president, or the wealth of a particular ruling family, the size of the sultan's harem, the stability of the Middle East or maintaining the price of oil. The point is that more than one utility function can be imagined. It isn't always obvious what individuals, or firms, or governments are striving to maximize. But it is probably safe to assume that they are maximizing something. This is because Homo sapiens is a deeply purpose-ridden species. The principle holds good even if the utility function turns out to be a weighted sum or some other complicated function of many inputs.


Перейти на страницу:
Изменить размер шрифта: