Let us return to living bodies and try to extract their utility function. There could be many but, revealingly, it will eventually turn out that they all reduce to one. A good way to dramatize our task is to imagine that living creatures were made {105} by a Divine Engineer and try to work out, by reverse engineering, what the Engineer was trying to maximize: What was God's Utility Function?

Cheetahs give every indication of being superbly designed for something, and it should be easy enough to reverse-engineer them and work out their utility function. They appear to be well designed to kill antelopes. The teeth, claws, eyes, nose, leg muscles, backbone and brain of a cheetah are all precisely what we should expect if God's purpose in designing cheetahs was to maximize deaths among antelopes. Conversely, if we reverse-engineer an antelope we find equally impressive evidence of design for precisely the opposite end: the survival of antelopes and starvation among cheetahs. It is as though cheetahs had been designed by one deity and antelopes by a rival deity. Alternatively, if there is only one Creator who made the tiger and the lamb, the cheetah and the gazelle, what is He playing at? Is He a sadist who enjoys spectator blood sports? Is He trying to avoid overpopulation in the mammals of Africa? Is He maneuvering to maximize David Attenborough's television ratings? These are all intelligible utility functions that might have turned out to be true. In fact, of course, they are all completely wrong. We now understand the single Utility Function of life in great detail, and it is nothing like any of those.

Chapter 1 will have prepared the reader for the view that the true utility function of life, that which is being maximized in the natural world, is DNA survival. But DNA is not floating free; it is locked up in living bodies and it has to make the most of the levers of power at its disposal. DNA sequences that find themselves in cheetah bodies maximize their survival {106} by causing those bodies to kill gazelles. Sequences that find themselves in gazelle bodies maximize their survival by promoting opposite ends. But it is DNA survival that is being maximized in both cases. In this chapter, I am going to do a reverse-engineering job on a number of practical examples and show how everything makes sense once you assume that DNA survival is what is being maximized.

The sex ratio – the proportion of males to females – in wild populations is usually 50:50. This seems to make no economic sense in those many species in which a minority of males has an unfair monopoly of the females: the harem system. In one well-studied population of elephant seals, 4 percent of the males accounted for 88 percent of all the copulations. Never mind that God's Utility Function in this case seems so unfair for the bachelor majority. What is worse, a cost-cutting, efficiency-minded deity would be bound to spot that the deprived 96 percent are consuming half the population's food resources (actually more than half, because adult male elephant seals are much bigger than females). The surplus bachelors do nothing except wait for an opportunity to displace one of the lucky 4 percent of harem masters. How can the existence of these unconscionable bachelor herds possibly be justified? Any utility function that paid even a little attention to the economic efficiency of the community would dispense with the bachelors. Instead, there would be just enough males born to fertilize the females. This apparent anomaly, again, is explained with elegant simplicity once you understand the true Darwinian Utility Function: maximizing DNA survival.

I'll go into the example of the sex ratio in a little detail, because its utility function lends itself subtly to an economic {107} treatment. Charles Darwin confessed himself baffled: “I formerly thought that when a tendency to produce the two sexes in equal numbers was advantageous to the species, it would follow from natural selection, but I now see that the whole problem is so intricate that it is safer to leave its solution for the future.” As so often, it was the great Sir Ronald Fisher who stood up in Darwin's future. Fisher reasoned as follows.

All individuals born have exactly one mother and one father. Therefore the total reproductive success, measured in distant descendants, of all males alive must equal that of all females alive. I don't mean of each male and female, because some individuals clearly, and importantly, have more success than others. I am talking about the totality of males compared with the totality of females. This total posterity must be divided up between the individual males and females – not divided equally, but divided. The reproductive cake that must be divided among all males is equal to the cake that must be divided among all females. Therefore if there are, say, more males than females in the population, the average slice of cake per male must be smaller than the average slice of cake per female. It follows that the average reproductive success (that is, the expected number of descendants) of a male compared with the average reproductive success of a female is solely determined by the male-female ratio. An average member of the minority sex has a greater reproductive success than an average member of the majority sex. Only if the sex ratio is even and there is no minority will the sexes enjoy equal reproductive success. This remarkably simple conclusion is a consequence {108} of pure armchair logic. It doesn't depend on any empirical facts at all, except the fundamental fact that all children born have one father and one mother.

Sex is usually determined at conception, so we may assume that an individual has no power to determine his or her (for once the circumlocution is not ritual but necessary) sex. We shall assume, with Fisher, that a parent might have power to determine the sex of its offspring. By “power,” of course, we don't mean power consciously or deliberately wielded. But a mother might have a genetic predisposition to generate a vaginal chemistry slightly hostile to son-producing but not to daughter-producing sperms. Or a father might have a genetic tendency to manufacture more daughter-producing sperms than son-producing sperms. However it might in practice be done, imagine yourself as a parent trying to decide whether to have a son or a daughter. Again, we are not talking about conscious decisions but about the selection of generations of genes acting on bodies to influence the sex of their offspring.

If you were trying to maximize the number of your grandchildren, should you have a son or a daughter? We have already seen that you should have a child of whichever sex is in the minority in the population. That way, your child can expect a relatively large share of reproductive activity and you can expect a relatively large number of grandchildren. If neither sex is rarer than the other – if, in other words, the ratio is already 50:50 – you cannot benefit by preferring one sex or the other. It doesn't matter whether you have a son or a daughter. A 50:50 sex ratio is therefore referred to as evolu-tionarily stable, using the term coined by the great British {109} evolutionist John Maynard Smith. Only if the existing sex ratio is something other than 50:50 does a bias in your choice pay. As for the question of why individuals should try to maximize their grandchildren and later descendants, it will hardly need asking. Genes that cause individuals to maximize their descendants are the genes we expect to see in the world. The animals we are looking at inherit the genes of successful ancestors.

It is tempting to express Fisher's theory by saying that 50:50 is the “optimum” sex ratio, but this is strictly incorrect. The optimum sex to choose for a child is male if males are in a minority, female if females are in a minority. If neither sex is in a minority, there is no optimum: the well-designed parent is strictly indifferent about whether a son or a daughter will be born. Fifty-fifty is said to be the evolutionarily stable sex ratio because natural selection does not favor any tendency to deviate from it, and if there is any deviation from it natural selection favors a tendency to redress the balance.


Перейти на страницу:
Изменить размер шрифта: