На этих двух электронных микрофотографиях видны конусы роста (растянутые, очень подвижные структуры на концах растущих отростков нервных клеток). А. Микрофотография, полученная с помощью обычного электронного микроскопа, показывает два конуса роста на конце аксоноподобного отростка клетки из симпатического ганглия крысы. Диссоциированные клетки росли в культуре, и показанный отросток разветвился за несколько минут до того, как клетка была фиксирована и обработана (без приготовления среза) для микроскопии. Тонкие пальцевидные выросты являются филоподиями, а распластанные поверхности между ними, похожие на тонкие пленочки, ламеллоподиями. Б. На микрофотографии, полученной с помощью сканирующего электронного микроскопа, показан растущий дендрит нейрона из гиппокампа плода крысы. Конусы роста в этом месте образовались уже через 2 часа после того, как диссоциированные клетки были перенесены в культуру, Оба снимка были сделаны в Медицинской школе Вашингтонского университета Дж. Кочраном, М. Банг (А) и Ст. Ротменом (Б).
Одна из наименее понятных проблем нейробиологии развития состоит в том, как аксоны определяют правильный путь. Это особенно трудно понять, когда аксонам приходится протягиваться на значительные расстояния сквозь структуры мозга, и в одной или нескольких точках своего пути отклоняться либо влево, либо вправо, продвигаясь к противоположной стороне мозга и образуя одно или несколько ответвлений до того, как они окончательно достигнут предопределенного местоположения. В некоторых системах это выглядит так, как если бы аксоны росли просто под влиянием каких-то градиентов, направленных вдоль больших осей головного и спинного мозга; в других системах больше похоже на то, что направление определяется взаимоотношениями с ближайшими соседями. Во многих случаях, однако, кажется, что внутри растущего аксона закодирован тонкий молекулярный механизм, позволяющий аксону точно реагировать на химические или структурные указатели на его пути.
Пример такого направленного роста продемонстрировала недавно Р. Леви-Монтальчини (R. Levi-Montalcini) из Лаборатории биологии клетки Национального совета по научным исследованиям в Риме. Когда она и ее коллеги вводили в головной мозг молодым крысятам белок, известный под названием фактора роста нервов, наблюдался аномальный рост аксонов клеток симпатического ганглия (периферических нейронов, лежащих рядом с позвоночником и, как известно, чувствительных к фактору роста) в спинной мозг и вверх по направлению к головному мозгу, по-видимому, вдоль пути, по которому диффундировал инъецированный фактор роста. В этом случае фактор роста нервов действовал не столько как трофический, или стимулирующий, рост, сколько как тропный, или направляющий, рост, при этом аксоны симпатических нервов отвечали хемотропизмом на присутствие этого фактора. Имеются еще два аспекта проблемы роста нервных отростков, заслуживающие обсуждения. Во-первых, это то, что большая часть нейронов образует вначале значительно больше отростков, чем им необходимо или же чем они способны впоследствии сохранить. Многие молодые нейроны несут на себе множество коротких дендритоподобных отростков, из которых почти все по мере "взросления" клеток втягиваются назад. Аналогично большинство развивающихся аксонов образует значительно больше связей, чем их остается во взрослом состоянии, иными словами, существует процесс ликвидации связей, во время которого устраняются многие (а в некоторых случаях все, за исключением одной) первоначальные связи. Второй аспект состоит в том, что у аксонов имеется тенденция расти в тесном соседстве друг с другом. Этот феномен известен под названием фасцикуляции (расположения пучками). В современных работах предполагается, что фасцикуляция связана с появлением на поверхности большей части аксонов веществ-лигандов, которые делают их способными объединяться и расти совместно с другими родственными аксонами. Одним из преимуществ латерального объединения такого типа является, по-видимому, то, что только первому нейрону в группе необходим традиционный конус роста, другие же аксоны лишь следуют за лидером.
Несомненно, что наиболее важным из нерешенных вопросов в развитии мозга остается вопрос, каким образом нейроны формируют специфическую пространственную структуру связей. Существовавшее ранее представление о том, что большинство связей мозга функционально отбирается из совокупности случайно сформированных соединений, в настоящее время кажется неправомочным. Уже на ранних стадиях развития большинство связей устанавливается точно; существует много доказательств того, что образованные связи специфичны не только для данной области мозга, но и для данного нейрона (а в некоторых случаях и для данных частей нейрона) внутри этой области.
Выдвинуто несколько гипотез для объяснения того, как достигается такая замечательная точность. Некоторые исследователи считают возможным объяснить это тем, что растущие аксоны поддерживают такие же топографические взаимоотношения друг с другом, как и тела их клеток. Другие подчеркивают значение временного аспекта (в частности, критическим является момент, к которому различные группы волокон достигают области своего назначения). Одной из гипотез, в которой делается попытка объяснения всех наблюдаемых особенностей роста, может послужить гипотеза химического сродства, сформулированная Р. Сперри (R. Sperry) из Калифорнийского технологического института. Согласно его точке зрения, большинство нейронов (или, что более вероятно, большинство малых популяций нейронов) приобретают химические различия на ранней стадии своего развития в зависимости от занимаемого положения, и эта их дифференцированность выражается в наличии соответствующих меток, которые и позволяют аксонам узнавать либо аналогичную, либо комплементарную метку на поверхности нейронов-мишеней.
Одним из экспериментальных подходов к изучению того, как нейроны образуют специфическую пространственную картину связей в развивающемся мозге, является воздействие на проекцию сетчатки в зрительном тектуме среднего мозга. При таком подходе, впервые разработанном Р. Сперри из Калифорнийского технологического института, глазное яблоко взрослой лягушки (или головастика на разных стадиях развития) поворачивают или трансплантируют. Позднее, после регенерации зрительного нерва (или после того как головастик превратится в лягушку и аксоны ганглиозных клеток сетчатки, составляющие зрительный нерв, образуют связи со зрительным тектумом), можно видеть, какое воздействие оказала операция на поведение лягушки. Данная серия рисунков, основанная на работе Сперри, вначале демонстрирует поведение нормальной лягушки (А). В первом эксперименте (Б) правый глаз был повернут на 180°; некоторое время спустя после регенерации зрительного нерва оказывалось, что попытка лягушки напасть на приманку, помещенную в верхнем поле зрения, была ошибочной точно на 180°. В следующем эксперименте (В) левый глаз был заменен на правый таким образом, что инвертировалась только дорсовентральная ось (толстая стрелка); в этом случае лягушка делала прыжок вперед к приманке, но в сторону нижнего, а не верхнего поля зрения. Затем (эксперимент Г) была осуществлена сходная трансплантация, но на этот раз глаз был повернут в передне-заднем направлении (тонкая стрелка); лягушка ощущала, что приманка располагалась в верхнем поле зрения, но прыгала вперед, вместо того, чтобы прыгать назад. Вывод из этих экспериментов согласуется с предположением о том, что волокна зрительного нерва при регенерации всегда прорастают опять в ту же часть зрительного тектума, которую они первоначально иннервировали, и что во время нормального развития они "находят путь" к правильному местоположению в тектуме сходным образом. Эти результаты объясняются гипотезой, что как ганглиозные клетки сетчатки, так и нейроны-мишени в тектуме несут химические признаки, помогающие им идентифицировать друг друга.