Исследование механизмов действия ГАМК в головном мозгу было стимулировано в последние годы открытием, сделанным недавно Т. Перри (Т. Perry) из Университета Британской Колумбии. Оно состоит в том, что для хореи Гентингтона - наследственного неврологического синдрома - характерен специфический дефицит ГАМК в мозгу. Возникающие при этой болезни непроизвольные движения связаны с наступающим в среднем возрасте постепенным разрушением полосатого тела. Посмертные исследования показали, что поражение мозга состоит в гибели тормозных нейронов, которые в норме содержат ГАМК; можно предположить, что в основе болезни лежит дефицит этого медиатора. К сожалению, попытка лечить больных заменой недостающей ГАМК пока неосуществима, поскольку еще не созданы аналоги ГАМК, способные проходить сквозь гематоэныефалический барьер.
Недавно было высказано предположение, что на ГАМК направлено действие таких транквилизаторов, как диазепам и другие производные бензодиазепина. Из всех психотропных препаратов врачи предпочитают прописывать бензодиазепины, но механизм их действия до сих пор неизвестен. Имеющиеся данные позволяют думать, что эти препараты повышают эффективность ГАМК на уровне ее рецепторов в головном мозгу. Хотя в мозгу идентифицированы специфические центры связывания диазепама, явно отличные от рецепторов ГАМК, оба типа рецепторов, по-видимому, взаимодействуют друг с другом. Заманчиво предположить, что в головном мозгу содержится некое еще не открытое вещество, которое в норме действует на рецепторы диазепама; возможно, это естественное соединение, вызывающее или ослабляющее состояние тревоги.
Нейрохимики не только выяснили молекулярную структуру и анатомическое распределение разных медиаторов, но и достигли больших успехов в понимании точной последовательности биохимических явлений, участвующих в синаптической передаче. Процесс химической передачи проходит через ряд этапов: синтез медиатора, его накопление, высвобождение, взаимодействие с рецептором и прекращение действия медиатора. Каждый из этих этапов детально охарактеризован, и найдены препараты, которые избирательно усиливают или блокируют конкретный этап. Эти исследования позволили проникнуть в механизм действия психотропных лекарственных средств, а также выявить связь некоторых нервных и психических болезней со специфическими нарушениями синаптических механизмов.
Первым этапом химической передачи является синтез молекул медиатора в нервных окончаниях. Каждый нейрон обычно обладает только таким биохимическим аппаратом, какой ему нужен для синтеза медиатора одного типа, который выделяется из всех окончаний его аксона. Молекулы медиатора не синтезируются de novo, а изготовляются путем переработки предшественника - обычно аминокислоты - в результате ряда ферментативных реакций.
Создание медиатора требует или одного этапа ферментативного катализа (как в случае ацетилхолина), или до трех этапов (как адреналина). При синтезе норадреналина исходным веществом служит аминокислота тирозин, которая поступает в нервное окончание из крови. Тирозин сначала превращается в промежуточное соединение L-ДОФА; затем второй фермент превращает L-ДОФА в дофамин ("полноправный" медиатор); а третий фермент превращает дофамин в норадреналин.
После выработки молекул медиатора они хранятся в окончании аксона в маленьких связанных с мембраной мешочках, называемых синаптическими пузырьками. В одном окончании могут быть тысячи синаптических пузырьков, а каждый пузырек содержит от 10000 до 100000 молекул медиатора. Пузырьки защищают их от разрушения ферментами внутри окончания.
Приход нервного импульса в окончание аксона вызывает высвобождение множества молекул медиатора из окончания в синаптическую щель. Механизм такого выделения остается спорным: одни исследователи полагают, что синаптические пузырьки прямо сливаются с пресинаптической мембраной и выбрасывают свое содержимое в синаптическую щель; другие утверждают, что подвижное скопление молекул медиатора выходит через специальные каналы. Но в любом случае известно, что нервный импульс запускает выход медиатора, повышая проницаемость нервного окончания для ионов кальция, которые устремляются в него и активируют механизм высвобождения молекул.
Вышедшие молекулы медиатора быстро проходят через наполненную жидкостью щель между окончанием аксона и мембраной воспринимающего нейрона. Здесь они взаимодействуют со специфическими рецепторами постсинаптической мембраны. Рецепторы фактически представляют собой крупные белковые молекулы, погруженные в полужидкую матрицу клеточной мембраны: части их торчат над и под мембраной подобно айсбергам. Выходящий на поверхность участок рецепторного белка и молекула медиатора имеют одинаковые очертания; они соответствуют друг другу наподобие ключа и замка.
Взаимодействие медиатора с его рецептором меняет трехмерную форму рецепторного белка, инициируя этим определенную последовательность событий. Это взаимодействие может вызвать возбуждение или торможение нейрона, сокращение мышечной клетки, а также образование и выделение гормона клеткой железы. Во всех этих случаях рецептор переводит сообщение, закодированное в молекулярной структуре медиатора, в специфическую физиологическую реакцию. Одни реакции, например сокращение произвольной мышцы, происходят за долю секунды; другие, например секреция гормона, занимают минуты, а иногда часы.
Многие рецепторы медиаторов имеют два функциональных компонента: центр связывания молекулы медиатора и пору, пронизывающую мембрану, избирательно проницаемую для определенных ионов. Связываясь с рецептором, медиатор меняет его форму так, что пора открывается и ионы, находящиеся внутри и снаружи клеточной мембраны, перемещаются вдоль градиента концентрации, оказывая этим возбуждающий или тормозный эффект на частоту импульсации нейрона. Будет ли электрический потенциал, создаваемый медиатором, возбудительным или тормозным, зависит от того, какие именно ионы перемещаются, и от направления их движения. Ацетилхолин является возбуждающим медиатором в синапсе между нервом и мышцей, потому что он заставляет положительно заряженные ионы натрия входить в клетку и понижать ее отрицательный потенциал покоя. ГАМК, напротив, соответствует рецептор, у которого пора избирательно проницаема для отрицательно заряженных ионов хлора. Когда эти ионы входят через открытые поры в воспринимающую клетку, они повышают трансмембранный потенциал и на время инактивируют клетку.