7. Произведение токов

Большая Советская Энциклопедия (СЛ) i-images-111356433.png
 приводит к мюонным распадам странных частиц с изменением странности:

L ® р + m- +

Большая Советская Энциклопедия (СЛ) i-images-165438236.png
, å- ® n + m- +
Большая Советская Энциклопедия (СЛ) i-images-105845018.png
,

К+ ® m+ + nm, К+ ® m+ + nm + p

и т. д., подчиняющихся тем же правилам отбора, что и соответствующие электронные распады (см. пункт 4). Кроме того, оно ответственно за нейтринные реакции, в которых рождаются одиночные странные частицы.

  8. Произведение токов

Большая Советская Энциклопедия (СЛ) i-images-129121755.png
 приводит к слабым ядерным силам, не сохраняющим, в отличие от обычных ядерных сил, пространственную чётность (Р). Такие районечётные силы, предсказанные теорией, были обнаружены на опыте Ю. Г. Абовым, П. А. Крупчицким, В. М. Лобашёвым, В. А. Назаренко и др. (СССР).

  9. Произведение

Большая Советская Энциклопедия (СЛ) i-images-109885427.png
 ответственно за многочастичные нелептонные распады странных частиц: L ® р + p, å+ ® n + p+,
Большая Советская Энциклопедия (СЛ) i-images-129415173.png
 ® L + p-, W- ® L + К-, W- ®
Большая Советская Энциклопедия (СЛ) i-images-198223044.png
 + p, К° ® p+ + p-, K+ ® p+ + p+ + p-. Во всех этих распадах DS = ± 1 и, кроме того, DТ = 1/2.

  10. Произведение

Большая Советская Энциклопедия (СЛ) i-images-169138562.png
 даёт вклад в районечётные ядерные силы (см. пункт 8).

  Рассмотренное выше выражение, описывающее С. в., не объясняет два явления: 1) нарушение СР-инвариантности, обнаруженное в 1964 в эксперименте Дж. Кристенсена, Дж. Кронина, В. Фитча и Р. Тёрли (США); 2) нейтральные нейтринные токи, обнаруженные в 1973 в ЦЕРНе (Европейском центре ядерных исследований).

  Экспериментальное исследование СР-неинвариантных эффектов в распадах нейтральных К-мезонов на два p-мезона, на pene и на pmnm  привело к выводу, что СР-неинвариантное взаимодействие является либо миллислабым (т. е. в 1000 раз слабее обычного С. в.), либо сверхслабым (в миллиард раз слабее обычного С. в.). Для выяснения природы СР-неинвариантного взаимодействия было бы крайне важным найти какой-либо СР-неинвариантный процесс не в распадах нейтральных К-мезонов, а в распадах или взаимодействиях др. частиц. В частности, большой интерес представляют поиски дипольного момента нейтрона.

  Нейтральные нейтринные токи обнаружены при взаимодействии мюонных нейтрино и антинейтрино с нуклонами: nm + n (р) ® nm + адроны,

Большая Советская Энциклопедия (СЛ) i-images-139917604.png
 + n (р) ®
Большая Советская Энциклопедия (СЛ) i-images-169766562.png
 + адроны. Сечения этих реакций составляют соответственно примерно 0,2 и 0,4 от сечений аналогичных реакций, протекающих под действием заряженного тока. Открытие нейтральных токов означает, что теория С. в., созданная в 1957, должна быть существенно модифицирована. В действительности такая модифицированная теоретическая модель С. в., содержащая нейтральные токи, была предложена ещё в 1967 С. Вайнбергом (США) и А. Саламом (Пакистан), и она в значительной степени стимулировала поиски нейтральных токов. В основе этой модели и её различных позднейших вариаций лежит гипотеза о том, что С. в. представляет собой не контактное взаимодействие токов, а осуществляется путём обмена промежуточными векторными бозонами (W) — тяжёлыми частицами со спином 1. Гипотеза о том, что переносчиками С. в. являются векторные бозоны, делает более полной аналогию с электромагнитным взаимодействием, из которой исходил Ферми. Чтобы убедиться в этом, достаточно сравнить рис. 2, 3 и 7. Действительно, роль промежуточного фотона на рис. 2 играет промежуточный бозон W на рис. 7. Из неопределённостей соотношения следует, что, для того чтобы обеспечить малый радиус С. в., масса промежуточного бозона MW должна быть достаточно велика. Расстояние, которое проходит виртуальный промежуточный бозон, порядка
Большая Советская Энциклопедия (СЛ) i-images-152275574.png
/MWc. В основе модели Вайнберга — Салама лежит идея о единой природе слабого и электромагнитного взаимодействий. При этом предполагается, что взаимодействие W-бозона со слабым током по силе такое же (более точно, примерно такое же), как взаимодействие фотона с электромагнитным током: в обоих случаях сила взаимодействия определяется электрическим зарядом е. Фермиевская константа является величиной вторичной и выражается через a и M:

Большая Советская Энциклопедия (СЛ) i-images-147951344.png
.

  В модели Вайнберга — Салама промежуточных бозонов три: два заряженных, W+ и W-, и один нейтральный, Z. Эти частицы, согласно расчётам, должны быть в десятки раз тяжелее протона (MW ³ 40Mp, MZ  ³ 80Mp). Характерная величина массы этих бозонов получается из величины константы С. в. G постоянной тонкой структуры a = 1/137, характеризующей электромагнитное взаимодействие частиц (

Большая Советская Энциклопедия (СЛ) i-images-183224853.png
). То обстоятельство, что в теорию существенным образом входит a, отражает очень важное свойство теории: она является единой теорией слабого и электромагнитного взаимодействий. При этом промежуточные бозоны и нейтральные токи необходимы для того, чтобы теория была непротиворечивой.

  Как отметил ещё в 1936 В. Гейзенберг, контактное взаимодействие фермиевских токов приводит к очень сильному росту С. в. на малых расстояниях. Позднейшие теоретические исследования показали, что теория такого взаимодействия неперенормируема: содержит бесконечное число бесконечных величин. В отличие от контактной фермиевской теории и от теории с одними лишь заряженными промежуточными бозонами, теория, содержащая симметричным образом заряженные и нейтральные бозоны и токи, перенормируема. Она содержит лишь несколько бесконечно больших величин, от которых можно избавиться с помощью операции, называемой перенормировкой (см. Квантовая теория поля).

  Промежуточные бозоны (W+, W-, Z)нестабильные частицы. Т. к. их масса очень велика, то для их образования нужны очень высокие энергии, недоступные современным ускорителям.

  Очень важный вопрос в модели Вайнберга — Салама — вопрос о нейтральных токах, меняющих странность, которые на опыте на много порядков подавлены по сравнению с заряженными токами и с нейтральными токами, сохраняющими странность. Например, распад долгоживущего нейтрального К-мезона:

Большая Советская Энциклопедия (СЛ) i-images-183961853.png
 ® m+ + m- подавлен по сравнению с распадом К+ ® m+ + nm в 108 раз, а верхний предел для распада K+ ® pm + nm  +
Большая Советская Энциклопедия (СЛ) i-images-151432224.png
 составляет примерно 10-7 от полной вероятности распада К-мезона. О ещё более сильной подавленности нейтральных токов, изменяющих странность, свидетельствует наблюдённая на опыте малая величина разности масс долгоживущего и короткоживущего нейтральных К-мезонов; такая разность масс возникает за счёт перехода К Û
Большая Советская Энциклопедия (СЛ) i-images-173933383.png
 и была бы очень большой, если бы существовало прямое взаимодействие нейтральных токов
Большая Советская Энциклопедия (СЛ) i-images-166727925.png
. Для того чтобы в рамках теории объяснить отсутствие нейтральных токов с изменением странности, было постулировано, что наряду с тремя кварками р, n, l существует четвёртый кварк с, который получил назв. «очарованного», или «суперзаряженного». При этом заряженный адронный ток, взаимодействующий с W-бозонами, имеет вид:


Перейти на страницу:
Изменить размер шрифта: