Человек:
— Что вы могли бы сказать о стихотворении Лермонтова «Горные вершины»?
Компьютер:
— Мне представляется, что в нем говорится о чем-то печальном и темном. Основной его тон минорный.
Ч.: — Да, пожалуй. Хотя в его понятийном содержании ничего особенно печального и нет, оно звучит действительно минорно. Ну а стихотворение «И скучно и грустно». Оно ведь тоже минорно, не правда ли?
114
К.: — Да. Оно минорное и темное, но к тому же еще довольно угрюмое.
Ч.: — Что-то мы все беседуем о печальных стихотворениях. Разве других вам не встречалось?
К.: — Почему же? Например, стихотворение Тютчева «Весенняя гроза». Оно производит впечатление чего-то яркого, сильного. Или вот его же «Я встретил вас» звучит возвышенно. Вы согласны?
Ч.: — Вполне. Характеристика, нужно признаться, удивительно точная. Может быть, поговорим о стихах других поэтов?
К.: — Пожалуйста. Очень разнообразно звучание стихотворений Блока. Например, стихотворение «Сольвейг» мне представляется ярким, сильным и светлым, а вот стихи «Как растет тревога к ночи» темные, устрашающие и угрюмые.
Ч.: — Не могу не согласиться с этими оценками. А какое произведение произвело на вас наибольшее впечатление?
К.: — «Левый марш» Маяковского. Его яркое, бодрое, стремительное и сильное звучание очень выразительно. Вы не находите?
Ч.: — Вы правы, я того же мнения. Ну а самое понравившееся вам стихотворение?
К.: — Есенин. «Я помню, любимая, помню». Оно по звучанию прекрасное и очень нежное.
Ч.: — Какие же звуки создают такой эффект? Особенно заметно доминируют в тексте стихотворения?
К.: —- Превышены по сравнению с нормой частотности целого ряда звуков, но особенно заметно доминируют Ю и Г.
Ч.: — Можно ли проследить за изменением их частотностей по строфам?
К.: — Конечно. В первой строфе
доминирует «прекрасное» и «нежное» Ю.
Ч.: — Да, здесь звучит тема «любимой». И кстати, в составе этого слова тоже есть Ю. А что во второй строфе?
К.: — Здесь частотности этих звуков уравновешиваются.
Ч.: — А в третьей?
К.: В третьей
резко возрастает частотность «грубого» и «злого» Г, значительно превышая частотность Ю.
Ч.: — Поразительно. Борьба тем и образов сопровождается борьбой звуков с соответствующей содержательностью. Ведь здесь возникает тема «другой», и снова даже в составе самого этого слова обнаруживается доминирующий Г. Ну а четвертая строфа?
К.: — Здесь опять равновесие.
Ч.: — Тогда последняя, пятая.
К.: — В пятой снова и особенно значительно возрастает частотность Ю, превышая и частотность Г, и вообще все предыдущие отклонения частотностей.
Ч.: — Так и должно быть, потому что тема «любимой» побеждает. Да, удивительно содержателен звуковой рисунок этого стихотворения.
В литературной беседе с компьютером, как, видимо, заметил читатель, допущена одна не совсем правомерная уловка: сначала компьютер превышает свои полномочия, создавая у собеседника впечатление, что он описывает содержание стихотворения. Простим машине эту неточность — она разрешена ей только для того, чтобы нагляднее подчеркнуть полную гармонию, буквально сплавленность звуковой формы и содержания всех упомянутых в беседе произведений. Тем более что в конце разговора становится совершенно ясно, какой именно аспект общей семантики текста анализирует компьютер.
Во всем остальном беседа вполне обоснованна. Понятийно-содержательная сторона стихотворения затрагивается в репликах человека, рассчитанных лишь на читателя и, разумеется, недоступных «пониманию» компьютера, который вообще только и делает, что определяет признаки фонетической содержательности текстов. Весь «антураж» признаков, придающий ответам вид реплик, тоже выполнен человеком и помещен в память компьютера в виде готовых клише. Но отыскивает нужный трафарет и заполняет его признаками уже сам компьютер, и согласитесь, имитация понимания им стихов вполне правдоподобна.
Нужные реплики наш электронный собеседник отыскивает тоже по вычисленным признакам и степени выраженности их числовых весов.
Так, в первой реплике компьютер определяет основной тон стихотворения как «минорный», потому что этот признак имеет наибольший вес среди выделенных. В ответе на вопрос о том, какое стихотворение произвело наибольшее впечатление, компьютер тоже учел веса выделенных признаков. Оказалось, что в «Левом марше» они наиболее высоки. Это означает, что звуковая ткань стихотворения очень выпукла, а ведь именно звучанием и определяются все «впечатления» машины.
Что касается «особенно понравившегося» стихотворения, то у компьютера есть подсказка: ему должно нравиться все «прекрасное». А поскольку этот признак был выделен только для стихотворения С. Есенина, то компьютер и дал такой ответ. Заметьте, что об этом стихотворении электронный любитель поэзии сказал, что оно «очень нежное». И тоже не случайно. Дело в том, что среди всех упомянутых произведений именно в этом признак «нежный» был выделен с наибольшим весом.
У читателя неизбежно должен был возникнуть вопрос — неужели звуковая ткань любого стихотворения выстроена так, что по ней столь определенно можно судить об основном эмоциональном тоне произведения?
Нет, конечно, не любого. И даже далеко не любого. Ведь использование содержательности звуков — лишь один из художественных приемов усиления выразительности текста, и вовсе не обязательно этот прием должен использоваться каждый раз. Он особенно уместен в произведениях лирического, ярко эмоционального характера, там, где особая роль отводится музыкальному звучанию стиха. Конечно, если в произведении доминирует рациональное, понятийное начало, звукопись может и не использоваться. В этих случаях машина не в состоянии поддержать беседу о поэзии или ее суждения будут просто нелепы. Правда, компьютер вел разговор, опираясь только на один аспект семантики — звукосодержательный. А как мы уже убедились, он кое на что способен и в работе с другими аспектами значения. Если подключить их, то «сообразительность» машины резко возрастет. Но об этом речь впереди.
Здесь же обсудим еще вот какую ситуацию. Бывает так, что у того или иного поэта для всех стихотворений чаще выделяются одни и те же определенные признаки фоносемантики. Например, для произведений Н. Некрасова компьютер обычно выдает: «минорное», «печальное», «темное», «тоскливое», «угрюмое», «устрашающее». Даже для отрывка «Ой, полным-полна коробушка» или для стихотворения-комплимента любимой женщине «Ты всегда хороша несравненно». Но недаром Н. Некрасова называют «поэтом печали». Такова и общая звуковая настроенность его стихов. Получается, что для отдельного стихотворения компьютер дает характеристики, не согласующиеся с нашими суждениями, а для творчества в целом они вполне подходят. То же и у В. Маяковского: звучание его стихов чаще всего «сильное», «стремительное», «бодрое», «яркое». Но ведь и общий тон его поэзии в основном именно таков.
И все же компьютер далеко не всегда может определить характер фоносемантики текста, даже если содержательность звуков активно использована в стихотворении. Дело в том, что единый фоносемантический тон произведения может соответствовать лишь единому же общему эмоциональному тону. Но много ли таких стихотворений, в которых выражено или явно доминирует одно какое-либо чувство, одно настроение? Чаще всего в одном произведении переплетены разные, даже противоречивые, эмоции, и тогда для их «сопровождения» нужны звуки с разной и даже противоположной содержательностью. Но отклонения таких звуков от нормы взаимно уничтожаются, и в среднем у компьютера получится, что звуковой фон нейтрален.