Открытия и гипотезы, 2015 №04 _27.jpg

Изображение цифр из индийской Вакхшалийской рукописи (XII век). Индийцы называли знак, обозначающий отсутствие какого-либо разряда в числе, словом «сунья», что значит пустой. Арабы перевели это слово по смыслу и получили слово «сифр».

Страны ислама

Сейчас нам может показаться странным, что страны ислама могли нести свет просвещения, но на самом деле именно так и было. Математические центры исламских стран сыграли большую роль в распространении знаний в Европу.

В IX–X веках научным исламским центром был Багдад, в котором работали ал-Хорезми, Хаббаш аль-Хасиб, ал-Фаргани, Сабит Ибн Курра, Ибрахим ибн Синан, ал-Баттани. Позднее возникли новые научные центры в Бухаре, Хорезме и Каире, в которых работали Ибн Сина, аль-Бируни и Абу Камил ал-Мисри, а затем в Исфахане и Мераге, где работали Омар Хайям и Насир ад-Дин ат-Туси. В XV веке новый научный центр был образован в Самарканде, в нём работал Гияс ад-Дин ал-Каши.

В начале IX века Мухаммед ибн-Муса ал-Хорезми написал книгу «Об индийском счёте». В XII веке Аделардом (Англия) и Иоанном Севельским (Испания) были сделаны два перевода книги на латинский язык.

Её оригинал не сохранился, но в 1857 году под названием «Алхорезми об индийском числе» был издан найденный латинский перевод. В трактате описывается выполнение с помощью индийских цифр на счётной доске таких арифметических действий, как сложение, вычитание, удвоение, умножение, раздвоение, деление и извлечение квадратного корня.

В 952–953 годах Абу-л-Хасан Ахмад ал-Уклидиси в своей «Книге разделов об индийской арифметике» использовал десятичные дроби при делении нечётных чисел пополам и некоторых других вычислениях. однако эта книга не оказала влияния на дальнейшее развитие. В начале XV века ал-Каши намеревался построить систему дробей, в которой все операции проводятся как с целыми числами и которая доступна тем, кто не знает «исчисления астрономов». В 1427 году ал-Каши описал систему десятичных дробей, которая получила распространение в Европе после сочинений Стевина в 1585 году. Таким образом, ал-Каши сформулировал основные правила действий с десятичными дробями, формулы перевода их в шестидесятеричные и обратно В своих работах ал-Хорезми производил простейшие операции с радикалами, которые представлялись более простыми, чем несоизмеримые отрезки, используемые в Древней Греции. Теория пропорций подверглась критическому анализу. В частности, выдающийся персидский математик, более известный нам как поэт Омар Хайям, в 1077 году в трактате «Комментарии к трудностям во введениях книги Евклида» говорил, что древнегреческое определение не отражает истинной сути пропорций. Хайям дал новое определение пропорции, ввёл отношения «больше» и «меньше», обобщил понятие положительного действительного числа.

Открытия и гипотезы, 2015 №04 _28.jpg

Страница из книги аль-Хорезми.

Америка

В Центральной Америке в основном использовалась двадцатиричная система счисления. Жрецы майя использовали её для календарных расчётов. В ней второй разряд был неполным и доходил только до 19. В качестве дополнительного основания использовалось число 5. Календарь майя представлял собой позиционную систему, где на каждой позиции располагалось божество с определённым количеством знаков. При письме божества не изображали, а для обозначения пустого разряда использовали символ в виде открытой раковины или глаза. В Южной Америке для записи чисел использовалась узловая нумерация, или кипу.

Арифметические расчёты проводились с помощью юпаны, которая представляет собой аналог абака, однако в связи с особенностями системы счисления арифметика, не связанная с астрономическими расчётами, получила слабое развитие.

Западная Европа

В эпоху раннего феодализма в Западной Европе потребности в науке не выходили за пределы вопросов практической арифметики и геометрии. Книги содержали начальные сведения о семи свободных искусствах, включая арифметику. Наиболее популярными были сочинения Боэция, датируемые VI веком, который в числе прочего перевёл на латинский язык «Арифметику» Никомаха с собственными числовыми примерами и часть «Начал» Евклида без строгих доказательств.

Через Испанию и Сицилию в X веке начали завязываться научные связи с арабским миром В это время Каталонию посетил учёный монах Герберт, ставший позднее папой Сильвестром II. Ему приписываются такие сочинения, как «Книжка о делении чисел» и «Правила счёта на абаке».

В XII–XIII веках в Европе появились латинские переводы арабских книг по арифметике.

Основные переводы были сделаны на территории Пиренейского полуострова в Толедо под покровительством архиепископа Раймонда I, а также в Барселоне и Сеговии Приверженцы представленной в книгах десятичной позиционной нумерации стали называться «апгористами» по имени математика ал-Хорезми в латинской форме. Постепенно новая система взяла верх. Основным её преимуществом явилось упрощение арифметических операций. Вместе с тем в Германии, Франции и Англии новые цифры не употреблялись до конца XV века.

Далее переводов пошёл итальянец Леонардо Пизанский (Фибоначчи), живший в XIII веке. В своём основном труде «Книга абака», написанном в 1202 году, он тоже выступил сторонником индийской системы нумерации. Пять глав книги посвящены арифметике целых чисел.

Фибоначчи использовал нуль как настоящее число, проводил проверку с помощью девятки, знал признаки делимости на 2, 3, 5, 9, приводил дроби к общему знаменателю с помощью наименьшего общего кратного знаменателей, излагал тройное правило, правила пяти, семи, девяти величин и другие правила пропорций, решал задачи на смешение, оперировал суммированием рядов, включая один из возвратных рядов, или ряд Фибоначчи, разъяснял способы приближённого вычисления квадратных и кубических корней. В «Книге абака» приводятся вместе с доказательствами разнообразные методы и задачи, которые широко использовались в сочинениях поздних математиков.

Преподавателю Оксфордского университета магистру Томасу Брадвардину (начало XIV века), ставшему впоследствии архиепископом Кентерберийским, принадлежит книга «Теоретическая арифметика», которая является сокращённым вариантом «Арифметики» Боэция. Кроме того, этот мыслитель в своих работах по механике использовал «половинное» отношение, на основе которого французский математик Николай Орем развил учение о дробных показателях степеней в своём трактате «Алгоризм отношений», а также подошёл к понятию иррационального показателя, которое можно заключать между достаточно близкими целыми и дробными, и осуществил обобщение возведения в степень на положительные дробные показатели.

Работы Орема были напечатаны только в XIX веке.

Именно в Европе математика обрела ту форму, которая нам известна со школьной скамьи. Цифры, система их написания и манипуляций ими, прошли длинный путь от зарубок на кости до высшей математики, которая понятна не многим. Подсчет количества выпасаемых гусей и вычисление траектории полёта космического зонда имеют одни и те же корни. Удивительно как далеко могла шагнуть наука за столь небольшой по историческим меркам промежуток времени.

Игорь Остин

Открытия и гипотезы, 2015 №04 _29.jpg

Реконструкция римского абака.

Арифметические фокусы

Миллионы людей во всех частях света увлекаются математическими фокусами, которые являются очень своеобразной формой демонстрации математических закономерностей. И это не удивительно. “Гимнастика ума” полезна в любом возрасте, она тренирует память, обостряет сообразительность, вырабатывает настойчивость, способность логически мыслить, анализировать и сопоставлять.


Перейти на страницу:
Изменить размер шрифта: