Теперь, когда вы уже познакомились с этой последовательностью, получите предмет головоломки. Заметим сначала, что если p нечетно, то мы переходим к Зp + 1 — числу, отличному от 1. Очевидно, что непосредственно предшествующий шаг есть деление на 2. Поэтому можно изменить правило построения последовательности описанным ниже образом: следующее за числом p равно
p/2, если p четно,
(Зp + 1)/2, если p нечетно,
Это вычеркивает некоторые члены предыдущей последовательности, не меняя проблемы остановки:
7 11 17 26 13 90 10 5 8 4 2 1
Вы можете пойти еще дальше в том же направлении, объединяя вместе все последовательные шаги, действующие по правилу (Зp + 1)/2, и все следующие за ними шаги, состоящие в делении на два. Вы получите два новых правила перехода, гораздо более уплотненные. Свяжите их и пустите в ход. Для числа 7 вы должны без задержки получить последовательность
7 13 5 1
Это позволяет рассматривать обобщения задачи. Пусть k — нечетное число. Возьмем в качестве правил перехода следующие:
p/2, если p четно,
k * p + k − 2, если p нечетно.
Возможно уплотнение, аналогичное предыдущему. Для k = 5 следующее за числом 3 есть 3, и существуют исходные точки, для которых программа не останавливается. Для k = 7 она идет точно так же. Так что проблема остановки связана со свойством числа k. Я бы здесь… Впрочем, мало ли чего я хочу!
Зашифрованные операции
Это — класс самых разнообразных задач. Задаются точные арифметические операции, в которых некоторые цифры либо стерты, либо заменены буквами. В данной операции одна и та же буква всегда заменяет одну и ту же цифру, и разные буквы представляют поэтому разные цифры. Нужно восстановить исходную операцию. Есть случаи, в которых это сводится к решению системы уравнений с неизвестными, представляющими собой букву, — системы, решение которой дает также решение исходной задачи. Компьютер не видит ничего скрытного. Таким образом, если что-то не так, то нужно действовать систематически методом проб и ошибок. Нужно выбрать значения для одних букв и получить с их помощью значения остальных. Нужно проверить, что разным буквам соответствуют разные значения. После конечного числа попыток мы получим решение — если оно единственно — или список всех возможных решений. А еще существуют промежуточные решения: вычисление ограничивает число осуществляемых попыток.
Головоломка 8. SEND MORE MONEY.[4]
Это — лаконичная телеграмма английского студента своему отцу. История умалчивает о том, как отец это принял и были ли отправлены деньги…
SEND + MORE = MONEY
Программа очень легкая. Время вычисления короткое. Едва ли это головоломка. Как раз для тренировки…
Головоломка 9. HELP THE YOUNG.[5]
Конечно, конечно. Почему бы не послать им еще денег? Та же задача:
HELP + THE = YOUNG
Отметим разницу с предыдущей задачей. Предыдущая использовала не все цифры от 0 до 9. В этой участвуют все. Можете ли вы воспользоваться этим?
DEVOIR, LEÇON, ÉLÈVE.[6]
Есть аналогичные зашифрованные сложения по-французски. Например, такая:
ÉLÈVE + LEÇON = DEVOIR
? Головоломка 10. Зашифрованное умножение.
Довольно сложений, это становится скучным. Вот зашифрованное умножение:
ABCDE * 9 = FGHIJ
Здесь 10 букв представляют 10 различных цифр, так что одна из них равна 9. Можно сразу кое-что сказать о возможных значениях букв, но чтобы получить решение, придется идти буквально ощупью. Столько же придется искать и компьютеру.
?* Головоломка 11. Забавное число.
Число 123456789 обладает забавными свойствами:
123456789 * 2 = 246913578
Как и исходное, удвоенное число образовано всеми девятью цифрами, кроме 0.
123456789 * 4 = 493827156
Результат снова образован девятью цифрами, отличными от 0.
123456789 * 5 = 617283945
По-прежнему 9 цифр.
123456789 * 7 = 864197523
Опять 9 цифр, и это еще не все.
123456789 * 8 = 987654312
Но это не работает ни для 3, ни для 6. Это не может работать и для 9, потому что в результате больше 9 цифр,
Тем не менее есть много чисел, образованных всеми 9 цифрами (кроме 0), которые после умножения на 3 дают результат, образованный теми же девятью цифрами. Можете ли вы дать список всех таких чисел, оканчивающихся на 9? И также список тех, которые кончаются на 3?
Можно ли распространить использованный метод на случай умножения на 6?
Доказательства теорем
Компьютер можно использовать для доказательства теорем. Это — трудная задача искусственного интеллекта. Мы снабжаем компьютер правилами вывода, даем формулировку того, что требуется доказать, и исходные аксиомы. Компьютер пытается найти последовательность правил вывода, которые могут привести от исходных данных к требуемым рёзультатам.
Здесь обо всем этом речь не идет. Я предлагаю вам только взглянуть на путь, использованный для доказательства с помощью компьютера знаменитой проблемы четырех красок: любая географическая карта может быть раскрашена четырьмя красками так, что любые две территории, имеющие общую границу, раскрашены, разными красками. Общая идея состоит в том, чтобы доказать вручную или, в случае необходимости, с помощью программы, что проблема будет решена полностью, если будет известно ее решение в некотором конечном числе случаев. Эти случаи исследуются на компьютере. Вот примеры, доступные этому методу.
Внимание: вы должны бороться с проблемой сложности. Если вы не будете принимать никаких мер предосторожности, число подлежащих исследованию случаев может сказаться невероятно большим и работа компьютера станет невозможной: ведь перед вами не вечность… Равновесие между подготовительной работой (доказательством палых теорем) и работой компьютера оценивается в зависимости от ваших возможностей, одновременно в области математических доказательств и в ресурсах вашего микрокомпьютера. К сожалению, не говорите: эта программа отнимает уйму времени, я перепишу ее на ассемблере. Это — худшее из решений. Все, что я вам предлагаю, осуществимо на Бейсике за разумное время. Если ваша программа требует уйму времени, значит, она плохо придумана.
Головоломка 12. Теорема 153.
Этот пример заимствован из [MJB]. Образуем числовую последовательность следующим образом:
— начальный элемент — произвольное натуральное число, кратное трем,
— за любым элементом последовательности следует число, равное сумме кубов всех цифр данного элемента.
Теорема. Любая такая последовательность становится (начиная с некоторого места) постоянной, равной 153.
Пример. Начнем с 33:
33
3³ + 3³ = 54
5³ + 4³ = 189
1³ + 8³ + 9³ = 1242
1³ + 2³ + 4³ + 2³ = 81
8³ + 1³ = 153
1³ + 5³ + З³ = 153
1³ + 5³ + З³ = 153
и теперь последовательность стала постоянной.
Используйте ваш компьютер для доказательства этой теоремы.
? Головоломка 13. Варианты.
Нелегко сказать, какую роль в предыдущей теореме играет то, что исходное число кратно трем. Но от вас не потребует чрезмерных усилий в общем случае, что два последовательных числа последовательности имеют равные остатки при делении их на 3. В последовательностях, которые мы стали изучать, все члены последовательности делятся на 3. Можно доказать также, что все члены последовательности, кроме, быть может, первого, делятся на 9.
Если взять натуральное число, не кратное трем, то все члены соответствующей последовательности будут иметь один и тот же остаток при делении на 3. Что, кроме этого, вы можете узнать о поведении этих последовательностей?