υ = F / R η

Обсудим величину F .

Если бы шарик падал в вакууме, то

F = F ↓ = mg = 4/ 3 π R 3 ρ g .

Так как шарик находится в воздухе, то на него действует и архимедова сила F↑ , кото­рая направлена противоположно F↓ и определяется той же формулой, что и F↓ , только величину ρ — плотность вещества шарика нужно заменить величиной ρo — плот­ностью воздуха. Вот теперь можно записать интересую­щую нас формулу в окончательном виде:

υ = 1( F↓ - F↑) /6π R η = 2/9. g R 2. (ρ - ρo)/ η

Эту формулу называют формулой Стокса. Нам она позже понадобится.

Вычислим скорость падения маленькой дождевой кап­ли. Допустим, что ее размер R 10-1 см. Так как g ≈ 103 см/сек2, η ≈ 2 . 10-2 г/см.сек (пуаз), ρ = 1 г/см3, ρo = 1,2.10-3 г/см3, то υ 102 см/сек.

Итак, мы выяснили, что маленькие капли летят со ско­ростью, пропорциональной квадрату их радиуса, и что величина этой скорости порядка 100 см за секунду. Если маленькая капля зародилась в облаке, которое плавает над землей на высоте около километра, и если ничто не помешает ей себя сохранить в полете, до земли ей лететь долго — около 15 мин. Еще раз подчеркнем — расска­занное о маленькой дождевой капле справедливо при соблюдении очень важной оговорки: если капля сохра­нит себя в целости на протяжении всего времени полета от облака до земли. И еще одна оговорка: все рассказан­ное о скорости полета капли относится к установившему­ся, или, как говорят физики, стационарному, режиму. В са­мом начале полета капля двигалась ускоренно, пока не достигла стационарной скорости.

 

Капля _26.jpg

Так во время полета изменяется форма крупной капли, падающей в воздухе

Теперь о больших каплях. Речь идет о каплях крупных, размер которых достигает не­скольких миллиметров. Та­кие капли иногда образуются в искусственных условиях, например при распаде струй, а иногда и в условиях есте­ственного дождя. С ними про­исходит вот что.

Большая капля, встречая при падении сопротивление воздуха, расплющивается ( Рυ >> Рл !!!). Плоская водя­ная лепешка, летящая в воз­духе, надувается им и стано­вится подобна парашюту. По мере того как этот миниатюр­ный водяной парашютик раз­дувается воздухом, образую­щая его пленка становится все тоньше и в конце концов рвется, прокалывается воз­душной струей. И тогда она распадается на мелкие капли, у которых уже своя судьба.

В американском «Жур­нале прикладной физики» ( J . Арр l . Р his ., 1956, V. 27, N 10) Мегарвей и Тейлор  опубликовали великолепную подборку фотографий летя­щих больших капель. Каждая фотография была сделана в момент мгновенной вспышки яркого света. Они отлично иллюстрируют рассказанное.

Если разрушение большой капли произошло в дожде­вом потоке, некоторые из образовавшихся маленьких ка­пель испарятся, не долетев до земли, а иные сами, или слив­шись с себе подобными, одолеют этот путь. А быть может, некоторые из мелких капель, возникших при разрушении капли-парашюта, столкнутся с другими каплями, сольют­ся с ними и примут участие в сотворении нового парашютика. Так тоже бывает.

Капля падает на жидкость

Это случалось видеть всем во время дождя, который за­стал вас у реки, или еще лучше в реке во время купания, или просто когда дождевые капли стучат по лужам: по­верхность воды начинает волноваться и возникают брыз­ги. Точнее проследить трудно — все происходит с такой скоростью, что глаз не успевает заметить и запомнить де­тали. Поэтому и видится момент падения водяной капли на поверхность воды различным людям по-разному.

Зорче иных обязаны видеть художники, пишущие кистью или пером. И у каждого художника особая, ему свой­ственная острота взгляда.

Поэт Леонид Темин о дожде, о падении дождевой капли, пишет так:

...Дождя косые линии

Весь мир перечеркнули,

И водяные лилии

По лужам вверх взметнули...

А поэт Дмитрий Кедрин в стихотворении «Приглашение на дачу» это же событие описывает совершенно по-друго­му:

...Итак, приезжайте к нам завтра, не позже,

У нас васильки собирай хоть охапкой,

Вчера здесь прошел замечательный дождик —

Серебряный гвоздик с алмазною шляпкой...

Оба поэта смотрели на одно и то же: как падает дожде­вая капля на поверхность лужицы. Но одному при этом представлялась лилия, а другому — гвоздик c алмазною шляпкой .

Что общего между острым гвоздем, даже тем, у которого шляпка из алмаза, и лилией, плавающей на поверхности воды? Лилия могла бы напомнить широкополую шляпу или красочный зонтик, но гвоздь! Между тем многим пи­сателям и поэтам виделся именно гвоздик во время дождя над рекой. Помните, у Некрасова:

...Светлые, словно из стали,

Тысячью мелких гвоздей

Шляпками вниз поскакали...,

а через много лет у Бунина:

...Вот капля, как шляпка гвоздя,

упала, и сотнями игл

затоны прудов бороздя,

сверкающий ливень запрыгал...

Вот, например, как много интересного увидел во время дождя на реке один из самых тонких наблюдателей при­роды писатель Константин Паустовский: «...особенно хорош спорый дождь на реке. Каждая капля выбивает в воде круглое углубление, маленькую водяную чашу, подскакивает, снова падает и несколько мгновений, пре­жде чем исчезнуть, еще видна на дне этой водяной чаши. Капля блестит и похожа на жемчуг...»

Много неожиданных и совершенно различных образов вызвала дождинка, падающая на поверхность воды: и гвоздик, и лилия, и блестящая жемчужина.

В действительности, если падение капли на воду на­блюдать с помощью скоростной кинокамеры — прибора более бесстрастного, чем глаз художниками обладающего большей «разрешающей способностью», все происходит так, как это изображено на приводимой кинограмме. Эта кинограмма была снята со скоростью две тысячи кадров в секунду. Оказывается, что действительно сразу после падения капли на поверхность воды возникает симметрич­ный водяной цветок — водяная лилия. Вскоре цветок увядает и лишается своих лепестков, а затем в центре опавшей лилии вырастает водяной столбик, вершина ко­торого имеет форму сферической капли,— «серебряный гвоздик с алмазною шляпкой».

Кинограмма, смонтированная из кадров скоростного фильма о падении водяной капли на поверхность воды

На поверхности капли бегают блики, и капля действительно напоминает жемчу­жину, увиденную Паустовским. Затем столбик погружа­ется в воду, образует воронку, из которой опять выраста­ет столбик, только уже потоньше первого, и перед тем как погрузиться в воду, он разбивается на множество мелких капель. Воронка и гвоздик чередуются несколько раз.

Правыми оказались и Темин, и Кедрин, и Паустовский, так по-разному увидевшие падение дождевой капли на по­верхность лужицы. Примечательно, что каждый из них увидел и художественно осмыслил различные последова­тельные стадии процесса: Темин — начальную, Кедрин — промежуточную, Паустовский — заключительную.

Как же объяснить все то, что запечатлела кинокамера? Представим себе, что на натянутую резиновую мембрану с некоторой высоты падает металлический шарик, щедро смазанный клеем. После того, как он достигнет поверх­ности мембраны, произойдет следующее. Мембрана под влиянием ударившегося о ее поверхность шарика про­гнется, затем, дополнительно натянувшись при прогибе, она начнет выравниваться, подбрасывая шарик кверху, сообщив ему при этом часть той энергии, которую мембра­на получила от шарика, упавшего на нее. Так как шарик, соприкоснувшись с мембраной, приклеился к ней, взле­тая вверх, он потянет за собой и мембрану; при этом об­разуется тянущийся за шариком полый резиновый стер­жень. А затем шарик начнет двигаться вниз, и все повто­рится снова.


Перейти на страницу:
Изменить размер шрифта: