При падении капли на поверхность воды происходит нечто подобное, однако многие детали процесса моделью шарик — мембрана не описываются. Падающий шарик создает в мембране просто углубление, а дождинка кроме углубления создает также множество мелких капель-ос­колков; симметрично разлетающихся в разные стороны. Именно это и заметил Темин, которому совокупность брызг представилась водяной лилией. А следующий за брызгами всплеск воды, подобный полому резиновому стержню, тянущемуся за железным шариком, Кедрину представился серебряным гвоздиком с алмазною шляп­кой. В модели шарик — мембрана деталь, увиденная Паустовским, отсутствует. Высокий и тонкий водяной стержень завершается каплей или несколькими каплями по той же причине, по которой тонкая водяная нитка, от которой отрывается крупная капля, разбивается на множество маленьких капель — сателлитов. Цилиндри­ческая форма жидкости невыгодна или, лучше так,— менее выгодна, чем сферическая, и поэтому цилиндр распадается па капли; самую крупную из них Паустов­ский заметил в тот момент, когда она погружалась в воз­никавшую под ней водяную чашу. Эта капля и напомнила Паустовскому блестящую жемчужину.

Высота гвоздика, время, необходимое, чтобы он возник и опал, определяются не только тем, какого размера была дождинка и с какой высоты она упала, но и тем, каковы физические свойства воды — ее вязкость и поверхност­ная энергия. Кинокадры свидетельствуют о том, что «гвоздик», высота которого около пяти сантиметров, вы­растает и опадает приблизительно за сотую долю секунды. Приблизительно эта величина и получится, если вяз­кость воды разделить на ее поверхностную энергию и умножить на высоту гвоздика,— именно так надо посту­пать, чтобы вычислить интересующее нас время.

Поскольку процессы, которые происходят вслед за па­дением дождинки на воду, зависят от вязкости и поверх­ностного натяжения воды, видимо, они должны выглядеть по-иному, если дождинка и лужа будут не водяными, а, скажем, глицериновыми. У глицерина вязкость значи­тельно больше, и это, наверное, скажется и на лилии, и на гвоздике, и на жемчужине. Но об этом — в другом очерке,

Я совсем не хочу, чтобы рассказанное здесь было вос­принято как предложение пользоваться скоростной кино­камерой или иным физическим прибором для исследова­ния достоверности поэтических образов или в качестве арбитра в затянувшемся споре между «физиками» и «ли­риками». Просто воспользовался стихами и скоростной кинокамерой, чтобы рассказать о явлении, на которое все смотрели и все видели по-разному.

Капля на кончике иглы

В английском журнале «Физика и химия поверхности» была помещена подборка фотографий, изображающих по­следовательность форм, которые принимает очень тонкая коническая вольфрамовая игла, если в течение длитель­ного времени ее выдерживать при высокой температуре.

Оказывается, что со временем на кончике иглы форми­руются шарики — капли.

В нашей лаборатории были получены очень похожие фотографии, но иглы, с которыми мы экспериментирова­ли, были не из вольфрама, и вообще не из металла, а из воды. О них рассказано в очерке «Капля падает на жид­кость».

 

Капля _27.jpg

Иглы вольфрама, распадающиеся на капли, очень напоминают водяные иглы

Я сравнил фотографии и поразился общности явле­ния в жидких иглах воды и в кристаллических иглах воль­фрама — самого тугоплавкого из всех металлов. Полу­чилось очень убедительное доказательство справедливо сти физической идеи, согласно которой кристаллические тела, подобно жидким, могут вязко течь. То, что вязкость кристаллов несравненно более высока, чем вязкость жид­кости,— обстоятельство важное, но в принципе существо дела оно не должно менять. Важно, что и кристалл и жидкость могут вязко течь и подобные по форме тела должны деформироваться, подчиняясь общим законам. Эта идея в физику вошла прочно; она, например, лежит в основе физической теории спекания кристаллических по­рошков, согласно которой кристаллические крупинки «сливаются», подобно капелькам жидкости.

Описано много опытов, в которых исследовалось вяз­кое течение кристаллов. Ученые растягивали кристалли­ческие нити, гнули кристаллические пластинки и всякий раз убеждались в том, что при высоких температурах и под влиянием малых нагрузок кристаллы текут, под­чиняясь тем же законам, что и жидкости.

Капля _28.jpg

А распадающиеся на капли водяные иглы очень напоминают вольфрамовые

И все же нельзя не удивиться, сопоставив фотографии вольфрамовых и водяных игл, настолько убедительно это сопоставление свидетельствует о «текучести» кристаллического тела: научный доклад в аудитории специалистов, посвященный изложению экспериментального доказательства справед­ливости идеи о принципиальной возможности вязкого течения кристаллов, можно было бы свести к жесту

 указкой в сторону этих фотографий и к краткому рас­сказу об условиях, в которых они были получены.

Специально заточенные вольфрамовые иглы, которые вблизи вершины имели диаметр около 0,1 микрона, в те­чение нескольких часов выдерживались в электронном микроскопе при температуре 2600° С, и с помощью этого же микроскопа их профиль периодически фотографировался.

Водяные иглы возникали самопроизвольно после паде­ния капли на поверхность воды. Диаметр такой иглы ра­вен нескольким миллиметрам. Деформировалась она быст­ро, за время около сотой секунды, и поэтому различные стадии процесса снимались скоростной кинокамерой. Огромное различие в вязкости воды и вольфрама и прояв­ляется в том, что распад соответствующих игл на капли происходит при резко отличных условиях: диаметр водя­ной иглы — миллиметры, время распада — сотая секун­ды при температуре 20° С; диаметр вольфрамовой иглы — десятая микрона, время распада — часы при температуре 2600° С.

Фотографии рассказывают об одном и том же; о том, что и вольфрамовая и водяная иглы со временем изменяют свою форму так, чтобы их поверхность уменьшалась и вместе с ней уменьшалась поверхностная энергия. Самый большой выигрыш наступил бы после превращения иглы в шар, так как из всех тел с определенным объемом ми­нимальной поверхностью обладает именно шар. Но для превращения иглы в шар вещество иглы должно переме­щаться на расстояние, приблизительно равное ее длине, что очень трудно осуществимо, а поэтому игла довольст­вуется меньшим выигрышем энергии: образуя перетяжки, она разбивается на много шариков-капелек. Этот выигрыш энергии более доступен, так как для распада на несколько капель вещество иглы должно переместиться на расстоя­ние, приблизительно равное диаметру иглы, а оно сущест­венно короче длины. Наиболее быстро этот процесс за­вершается в самом тонком месте иглы — у ее кончика.

Вот, пожалуй, все, что я хотел рассказать о фотогра­фиях вольфрамовых и водяных игл и о каплях, на которые они распадаются.

Антидождь

Водяные капли, падающие в воздухе вниз,— это дождь. Так сказать, положительный дождь. Очевидно, анти­дождь, или отрицательный дождь,— это воздушные кап­ли, поднимающиеся вверх в воде. Все наоборот: не водя­ные капли, а воздушные, не в воздухе, а в воде, не вниз, а вверх. Такой своеобразный дождь можно наблюдать в аквариуме, когда его продувают воздухом. Во время дож­дя, падающего на поверхность воды, на воде появляются и лопаются воздушные пузырьки. Капля, падая на воду, образует воронку, которая, захлопываясь, превращается в пузырек, подскакивающий кверху, т. е. в каплю отри­цательного дождя.

Отрицательный дождь появляется и в том случае, если на дне реки происходят какие-либо реакции с выделением газа. В металлургии про­цесс обогащения основан на таком же принципе: частицы пустой породы, приклеив­шись к поверхности всплы­вающего пузырька, уходят в пену. Словом, стоит поинтересоваться, как «падают» вверх капли антидождя. Отрица­тельный дождь лучше всего наблюдать с помощью скоро­стной камеры, которая заме­тит детали, ускользающие от глаза. Фильм об отрицатель­ном дожде снимался при не­большой частоте кадров — около ста в секунду, что всего в 4 раза быстрее обыч­ных съемок, но и при этом мы увидели много красивых деталей процесса.


Перейти на страницу:
Изменить размер шрифта: