Какими же путями на основании этих и других физических свойств ударной волны осуществляются за рубежом поиски защиты от нее? (Заметим, что мы рассматриваем здесь только воздушную ударную волну, не затрагивая волну сжатия в грунте и ударную волну ё воде.) Как сообщалось в зарубежной печати, сам человек, без защиты, очень уязвим от воздействия ударной волны. В городе он, например, может получить так называемое косвенное поражение, вызываемое летящими осколками оконных стекол и разрушающихся зданий, при избыточном давлении 0,14 кг/см2. Хотя, как сообщала зарубежная печать, световое излучение ядерного взрыва может нанести ему ожоги второй степени на расстояниях, где давление имеет в два раза меньшую величину, то есть 0,07 кг/см2.
Однако на основе изучения свойств ударной волны сделаны определенные рекомендации, которые позволяют незащищенному человеку уцелеть при давлениях, в 10 раз и более превышающих названное выше и определяемое величиной его прямого поражения, то есть непосредственным сжатием волной. Для этого надо максимально уменьшить так называемое метательное действие волны, связанное со скоростным напором, и уменьшить вероятность поражения осколками. Все это осуществимо, если после ядерной вспышки, находясь на открытой местности, быстро упасть на землю лицом вниз и головой в направлении взрыва или в противоположную сторону. Времени для этого может быть достаточно. Так, например, на преодоление расстояния в 16 км от эпицентра воздушного взрыва мощностью 10 мгт ударная волна тратит 37 секунд. Площадь тела лежащего человека, подвергающегося действию ударной нагрузки, будет малой, и опасность перемещения его уменьшится. От прямого воздействия ударной волны, и в частности для защиты барабанных перепонок, в этом случае рекомендуется использовать специальные предохранительные капсулы.
Для защиты личного состава от скоростного напора ударной волны и летящих осколков разрушаемых сооружений очень эффективны, как считают зарубежные специалисты, окопы и даже открытые траншеи и простейшие полевые сооружения в виде блиндажей и убежищ легкого типа. Избыточное же давление во фронте ударной волны выше 2 кг/см2, по их мнению, требует уже постройки специальных защитных сооружений. Остовы таких сооружений возводятся из дерева, волнистой стали, бетона и железобетона. Однако эти сооружения так или иначе связаны с окружающей воздушной средой; потому одной из важных проблем стала борьба с затеканием ударной волны через дверные проемы, вентиляционные и другие сантехнические каналы. Появилась специальная классификация отверстий — отверстия большого и малого диаметра, открывающиеся периодически и открытые постоянно. Все они оборудуются специальными защитными устройствами — защитными герметическими дверями, противовзрывными клапанами или клапанами-отсекателями, волногасителями.
Двери делаются равнопрочными с защитными сооружениями. Но если на остовы заглубленных сооружений действует волна сжатия в грунте, то двери воспринимают воздушную ударную волну. Для защиты от больших давлений они получаются весьма массивными. На рис. 3 показана защитная дверь одного из зарубежных пунктов управления, рассчитанная на избыточное давление в несколько десятков килограммов на квадратный сантиметр.
А нельзя ли облегчить условия работы дверей при воздействии ударной волны? Оказывается, можно, если предварительно «загрузить» волну, заставить ее растратить часть энергии. Так, например, считают, что, установив во входных туннелях перегородки, которые разрушаются на пути движения волны к дверям, можно снизить действие ее на дверь, поскольку обломки перегородок блокируют проход и отсекают часть ударной волны, тем самым ослабляя ее.
Для предохранения сооружений от затекания ударной волны через отверстия, которые в обычное время открыты — воздухозаборные, выхлопные и другие, — с успехом может использоваться само свойство большой продолжительности действия ударной волны. В этом случае применяют специальные системы, состоящие из различных типов противовзрывных клапанов, лабиринтных каналов или расширительных камер.
Один из вариантов таких защитных устройств работает по следующему принципу. Ударная волна одновременно подходит к воздухозаборному отверстию и противовзрывному клапану, находящимся на некотором расстоянии друг от друга. Клапан, устроенный по типу золотника, под действием волны перемещается и успевает закрыть вентиляционный канал до того момента, как по этому каналу снаружи подойдет ударная волна. Длина канала-лабиринта выбирается с таким условием, чтобы время движения по нему не превышало времени срабатывания клапана.
Вместо лабиринта может применяться расширительная камера. В этом случае используется свойство сжатого воздуха при резком увеличении сечения канала, в котором он движется, терять скорость, а с ней плотность и давление. Расширительная камера может использоваться и в тех случаях, когда запорные клапаны пропускают в сооружение определенную часть волны. К таким клапанам относится, например, маятниковый. Он представляет собой металлический шар, подвешенный в специально изогнутом участке воздуховода или трубопровода. Под действием ударной волны шар перемещается относительно точки закрепления, запирает сферическое гнездо в воздуховоде и держит его в таком положении во время действия фазы сжатия. Когда наступает разрежение, шар отводится обратным движением воздуха. Объем расширительной камеры определяется или временем срабатывания клапана или допустимым давлением, которое может возникнуть в сооружении.
Там, где потребность в воздухе невелика, вентиляционная система может защищаться песчаными или гравийными волногасителями. В этом случае волна не отсекается, как это происходит при действии клапана, а гасится в результате многократных отражений в толще гравия или песка. По сообщениям печати, испытание таких волногасителей показало, что они способны снизить избыточные давления в ударной волне с 7 до 0,014 кг/см2.
В ряде случаев, особенно при защите больших воздухозаборных отверстий, использование энергии самой ударной волны становится неэффективным. Из-за громоздкости клапанов-отсекателей, их сравнительно медленного срабатывания она успевает проникнуть в сооружение. В таких случаях на помощь приходит автоматика. Клапаны получают дистанционное управление, закрывая отверстия по сигналу специальных датчиков до прихода ударной волны.
Датчиками могут служить фотоэлектрические реле, срабатывающие при вспышке ядерного взрыва. Сигналом о взрыве могут служить и гамма-излучения. К датчикам подключаются сервомеханизмы, которые и перемещают запорные элементы клапанов. Основным недостатком систем с дистанционным управлением клапанов считается необходимость осуществления специальных мероприятий по защите электронных устройств, весьма чувствительных к различным внешним воздействиям.
Вынужденные считаться с дороговизной ядерного оружия зарубежные военные специалисты одновременно с натурными испытаниями в течение ряда лет разрабатывали методы и средства моделирования и имитации ударных волн. При этом сыграло свою роль и подписанное многими странами соглашение о запрещении некоторых видов испытаний ядерного оружия.
Изучение физических свойств ударной волны ядерного взрыва, а также законов газовой динамики, описывающих механизм образования ударных волн, — кстати, законов, хорошо известных задолго до появления атомного оружия, — позволило разработать несколько способов создания или, как еще говорят, генерирования ударных волн, близких по своим параметрам к волнам ядерного взрыва.
Наибольшее распространение для моделирования ударных волн с нужными характеристиками за рубежом получили так называемые ударные трубы. Простейшие из труб — пневматические. С них как раз и начинался наш рассказ. Как уже говорилось, в одну часть трубы, так называемую камеру высокого давления, нагнетается воздух. После разрыва диафрагмы он устремляется в трубу, генерируя ударную волну. Широко распространены трубы, в которых ударная волна создается и другим путем.