Глава 4
Обобщения механики
Механика Ньютона, которую мы изложили в 1-й книге, является величайшим достижением человеческого гения. С ее помощью рассчитываются пути планет, траектории ракет, поведение механизмов. Развитие физики в XX веке показало, что законы ньютоновской механики имеют два ограничения: они становятся непригодными, когда речь идет о движении частиц малой массы; они перестают служить нам верой и правдой, когда речь идет о движении тел со скоростями, близкими к скорости света. Для малых частиц механику Ньютона заменяют так называемой волновой механикой, для быстро движущихся тел — релятивистской механикой.
Классическую механику приходится также несколько усложнить, когда мы сталкиваемся с очень большими силами тяготения. Непредставимо огромные поля тяготения, которые командуют поведением некоторых сверхплотных звезд, не разрешают ограничиться теми простыми формулами механики, с которыми читатель познакомился в 1-й книге. Но эти изменения мы оставим в стороне и остановимся на двух важнейших обобщениях, которые приходится делать, когда мы рассматриваем движения микрочастиц и когда изучаются движения со скоростями, близкими к скорости света.
Начнем с релятивистской механики. Путь к этой важной главе физики меньше всего напоминает прямую дорогу. Он не только извилист, но был проложен вроде бы через совсем другие страны. История началась с эфира. Вообще-то говоря, в конце XIX века физики благодушествовали. Учитель Макса Планка не советовал ему посвятить себя физике, ибо наука эта, по сути дела, закончена. Всего лишь два «пустяка» несколько портили вид стройного здания: не ладилось с объяснением излучения черного тела (разобравшись в этой «мелочи», физики пришли к открытию квантов), и потом портил настроение опыт Майкельсона. Этот эксперимент, доказавший что скорость света не складывается со скоростью Земли и одинакова во всех направлениях, заставил задуматься о свойствах эфира.
Мало кто сомневался в существовании некой тонкой материи, колебания которой и представляют собой электромагнитные волны. По прошествии ста лет кажется даже удивительным, что, несмотря на большое число несуразностей, к котором приводила «эфирная гипотеза», подавляющее большинство исследователей, и притом талантливых, незаурядных, шли на любые обходные маневры, вводили бездну дополнительных предположений, лишь бы спасти представление о свете как о движении невидимой субстанции.
Кто представлял себе эфир, как спокойное море, через которое пробираются планеты; кто думал, что эфир может увлекаться, как воздух, движущимися телами. Как ни странно, никто не высказывал, казалось бы, очевидной мысли, что колебания электрического и магнитного векторов происходят в точке, а потому не могут быть объяснены механическими смещениям. Как-то сводились концы с концами, строились теории в которых выводились формально правильные математические выражения (в них фигурировал пресловутый корень квадратный √(1 — (v/c)2), где v — скорость движения тела, а с — скорость света), но трактовались эти формулы неверно. Особенно большие огорчения доставил мыслителям опыт Майкельсона, который был впервые проделан в 1881 г. Используя интерферометр, устройство которого мы описывали в гл. 2, Майкельсон показал, что скорости света вдоль и поперек движения Земли по орбите практически одинаковы.
И этот убийственный для теории существования эфира факт не заставил ведущих физиков отказаться от веры в тончайшую материю, пронизывающую все тела. Считалось, что опыт Майкельсона заставляет нас распроститься с эфирным ветром. Ну, и пожалуйста. Картина мира будет еще краше, если считать эфир неподвижным и признать ньютоново абсолютное пространство, по отношению к которому совершают свой бег небесные тела.
Для объяснения опыта Майкельсона такие крупнейшие физики, как Джозеф Лармор (1857–1942) и Гендрик Антон Лоренц (1853–1928), применили гипотезу сокращения тел в направлении их движения. Однако логические противоречия и искусственность объяснения многих явлений, касающихся электродинамики, продолжали оставлять чувство неудовлетворенности.
Разрубить гордиев узел всех противоречий выпало на долю величайшего физика нашего столетия Альберта Эйнштейна (1879–1955).
АЛЬБЕРТ ЭЙНШТЕЙН (1879–1955) — гениальный ученый, творец теории относительности, революционизировавшей физическое мышление. В 1905 г. Эйнштейн публикует труд, посвященный специальной теории относительности. В 1907 г. им получена формула, связывающая энергию и массу тела. В 1915 г. Эйнштейн публикует общую теорию относительности. Из теории следовали новые законы тяготения и выводы о кривизне пространства.
Теорией относительности не исчерпывается вклад Эйнштейна в физику. Из работы Планка он делает вывод о существовании частицы света — фотона и показывает, каким образом можно с этих позиций объяснить ряд фундаментальных явлений, в том числе и фотоэффект.
Отправной точкой рассуждений Эйнштейна служил принцип относительности. Мало кто сомневался после Галилея, что в отношении механических движений все инерциальные системы равноправны (вернитесь, пожалуйста, к 1-й книге и освежите в памяти все, что было сказано по этому поводу). Получается как-то странно, да и несовершенно с эстетических позиций: для механических движений равноправие, а для электромагнитных его нет.
Откажемся от этой «некрасивой» точки зрения и примем, что принцип относительности верен для всех явлений.
А теперь задумаемся над результатом опыта Майкельсона. Попытки объяснить результат этого эксперимента, рассматривая распространение света в «эфире» наподобие распространения звука в воздухе, также не удовлетворяют Эйнштейна. Он чувствует, что «что-то» здесь не то. Собственно говоря, почему мы обязаны «подравнивать» свет и звук? Из-за того, что и тот и другой способны дифрагировать? Не такой уж сильный довод. Откажемся и от этой точки зрения и примем следующий постулат (на первый взгляд кажущийся диким): скорость света в вакууме одинакова с точки зрения всех наблюдателей, движущихся в разных инерциальных системах. В каком бы направлении ни бежала электромагнитная волна, какое бы тело ни послужило ее источником, земляне и инопланетяне, проживающие в другой галактике (как хочется многим фантазерам верить в их существование), измерят одну и ту же скорость — 299 792 км/с.
Вдоль прямолинейного участка железнодорожного пути катится вагон с неизменной скоростью v. Параллельно дороге идет шоссе. По нему в том же самом направлении, мчится мотоциклист. Инспектор ГАИ, пост которого расположен вблизи железной дороги, свистит вслед нарушителю — он промчался мимо него со скоростью u, куда большей, чем дозволено. Маленький радар, которыми теперь снабжены многие инспекторы, показывает 85 км/ч. Машинист поглядывает на мотоциклиста, который быстро нагоняет, а затем и обгоняет поезд. И этому наблюдателю нетрудно измерить скорость мотоциклиста. Она будет равна u' = 35 км/ч. Мне не надо доказывать читателю, что скорость поезда равна 50 км/ч. Справедлив закон сложения скоростей:
u = v + u'
И вот это, казалось бы сверхочевидное правило не подходит для светового луча. Фотоны движутся с одной и той же скоростью по отношению к двум наблюдателям, находящимся в разных инерциальных системах.
Гений Эйнштейна состоял в том, что он отказался от этого очевидного вывода не только для света, но желая сохранить единый подход ко всем физическим явлениям, как электромагнитным, так и механическим, взял на себя смелость отказаться от закона сложения скоростей для всех тел.
Разумеется, с подобных позиций опыт Майкельсона и объяснять нечего. Раз скорость света универсальна, значит, она будет одинаковой во всех направлениях — и вдоль земной орбиты, и поперек пути обращения Земли вокруг нашего светила.