Заряды создаются в центре прибора (скажем, ионизация водорода создает протоны). Первая окружность будет иметь небольшой радиус. Однако каждая следующая окружность будет иметь больший радиус, поскольку, согласно приведенной формуле, он пропорционален скорости движения частицы.
На первый взгляд кажется, что, увеличивая размеры циклотрона, а вместе с этим и радиус кольцевой траектории, мы можем сообщить частице любую энергию. Достигнув желаемой энергии, нам останется лишь с помощью отклоняющей пластинки выпустить пучок, наружу. Дело обстояло бы идеально, если бы не зависимость массы от скорости. Формула Эйнштейна для массы, не имеющая, казалось когда-то, никакого практического значения, становится основной при расчетах кольцевых ускорителей.
Поскольку с возрастанием скорости масса частицы возрастает, то период обращения не остается неизменным, а растет. Частица начинает запаздывать. Она придет к ускоряющему промежутку не в тот момент, когда фаза напряжения изменится на 180°, а позже. По мере возрастания скорости мы придем к такому положению, что электрическое поле не только перестанет подхватывать частицы, но даже будет их тормозить.
Циклотрон позволил разгонять протоны примерно до 20 МэВ. Казалось бы, не так плохо. Но, как я уже сказал, физикам для их работы требуются все более и более мощные приборы. Ясно, что для достижения больших энергий нужно искать новые пути.
Вид формулы для периода обращения частицы подсказывает, какой путь надо избрать. С возрастанием скорости растет масса. Ну что же, значит, для поддержания периода надо увеличивать «в такт» напряженность магнитного поля. Однако это решение просто лишь на первый взгляд. Не надо забывать, что радиус обращения при каждом обороте частицы возрастает. Так что требуется, чтобы синхронное возрастание массы и магнитного поля было бы справедливо для частицы, проходящей последовательно окружности со все возрастающими радиусами. Внимательно поразобравшись в этой взаимосвязи величин, мы выясним, что найдутся такие «удачные» частицы, для которых, при некотором заданном темпе нарастания напряженности магнитного поля, это условие будет выполнено. А главное, окажется, что произойдет своеобразная автофазировка. Частица, у которой энергия больше, чем надо для радиуса ее обращения, будет замедляться из-за излишнего прироста массы; напротив, нехватка энергии приведет к ускорению.
Самыми простыми вычислениями, с помощью формул радиуса и периода обращения частицы, читатель может самостоятельно, убедиться, что именно так будет обстоять дело (задайте, темп увеличения напряженности магнитного поля, вычисляйте траектории частиц, постройте график — и вы почувствуете принцип автофазировки). А можете поверить мне на слово, что таким способом можно в принципе увеличивать скорость частиц до предела. Придется только использовать для ускорения импульсный метод. При возрастании напряженности поля установка работает. Обратный ход является холостым. Но мы не будем задерживаться на этом методе. Он является также пройденным этапом. Если сохранить этот принцип, то для создания современных ускорителей потребовалось бы изготовлять магниты массой в миллионы (!) тонн.
Современные кольцевые ускорители, называемые синхрофазотронами, осуществляют ускорение частиц, на одной орбите. Поэтому вся центральная часть магнита как бы вырезается. Работа в этих машинах также происходит импульсным методом. Согласованно меняют как напряженность магнитного поля, так и период электрического поля. Удачные частицы будут набирать скорость, двигаясь по строго кольцевой орбите. Менее удачные будут колебаться около хорошей орбиты, но все же будут набирать скорость.
В принципе ускорение можно довести до фантастических величин. Можно достичь скорости протонов, еле заметно отличающейся от скорости света.
Нам остается ответить на вопрос, зачем нужны такие машины. Ускоритель строят для того, чтобы разобраться в физике элементарных частиц. Чем выше энергия заряженных частиц, используемых как снаряды, бомбардирующие мишени, тем больше шансов найти законы взаимного превращения элементарных частиц.
Вообще-то говоря, мир построен всего лишь из трех частиц: электронов, протонов и нейтронов. Электрон пока что нет оснований считать составной частицей. Что же касается протонов и нейтронов, то они могут быть расщеплены на части. При разных столкновениях между «осколками» возникают новые частицы. Сегодня их насчитывается что-то около 250, и вся беда в том, что это число непрерывно растет по мере того, как возрастают мощности ускорителей. Специалисты в области физики элементарных частиц не теряют надежды найти что-то вроде системы Менделеева для элементарных частиц и свести их к небольшому числу, если так можно выразиться, «проточастиц», — удалось же сотню элементов и несколько сот их изотопов свести к комбинациям электронов, протонов и нейтронов.
Читатель вправе полюбопытствовать, какой же тогда смысл мы вкладывали во фразу: мир построен из трех частиц? Дело заключается в следующем. Совершенно устойчивыми частицами являются только протон и электрон. Нейтрон не вполне устойчив, если слово «устойчив» понимать житейски. Но время его жизни в мире частиц огромно: оно равно примерно 103 с. Что же касается множества остальных элементарных частиц, которые доставляют столько забот теоретикам, то их сроки жизни меньше 10-6 с. Разумеется, два последних числа не идут ни в какое сравнение.
Но тем не менее хочется привести в систему и эти короткоживущие обломки материи. Для элементарных частиц предлагалось много таких систем. Но как только на сцену выходил более мощный ускоритель, с его помощью обнаруживались новые явления, которые не укладывались в принятую схему.
В момент, когда пишутся эти строки, специалисты настроены оптимистически. Всю систему элементарных частиц удается как будто бы свести к «проточастицам», которые получили название кварков. Беда в том, что кварки, в отличие от электронов и протонов, не наблюдались и, вероятно, не могут наблюдаться в принципе. Чтобы создать «систему Менделеева» для элементарных частиц, кварку приходится придать электрический заряд, равный либо одной трети, либо двум третям заряда электрона, и приписать два дополнительных параметра, которым нельзя сопоставить какой бы то ни было образ. Эти параметры носят названия «странность» и «шарм»[2].
Автор этой книги не собирается останавливаться на проблемах, связанных с элементарными частицами. Он не делает этого не потому, что трудно популярно объяснить существующие схемы, а по той причине, что еще рано быть уверенными в их шарме и красоте. Не исключено, что появятся совсем новые идеи касательно элементарных частиц, совсем новые принципы подхода к этим крошечным участкам Вселенной, измеряемым (в сантиметрах) единицей, поделенной на единицу с тринадцатью нулями.
В 1923 г. в работе исключительной смелости и гениальной простоты французский физик Луи де Бройль писал: «В оптике в течение столетий слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым. Не делалась ли в теории микрочастиц обратная ошибка?» В этой работе де Бройль указал путь, следуя которому можно было связать с частицами волновые представления.
Его работу продолжает и завершает замечательный немецкий физик Эрвин Шредингер. А несколько позже, к 1926–1927 гг., становится ясным, что волновая механика и квантовая механика — по сути дела равнозначные термины. Эта новая механика представляет собой важнейший раздел физики, который учит нас, как рассматривать поведение микрочастиц в тех случаях, когда ни корпускулярный аспект, ни волновой недостаточны для трактовки событий.
Мы предупреждали читателя, что не следует слишком буквально понимать выражение «электромагнитная волна». И радиоизлучение, и свет, и рентгеновские лучи могут быть рассмотрены в двух аспектах: волновом и корпускулярном. Совершенно такое же утверждение справедливо и для потоков частиц. Хотя потоки частиц имеют четкие отличия от электромагнитного излучения (главное из них, то, что электроны, ядра, нейтроны и ионы могут двигаться с любыми скоростями, а фотоны — только со скоростью 300 000 км/с), этот вид: материи также выявляет в различных экспериментах то свойства волны, то свойства корпускул.
2
В последние годы выяснилась необходимость в новом параметре, которому дали название «бьюти», т. е. красота.