Несколько слов об электролюминесценции, происходящей в некоторых полупроводниковых диодах на границе р-n-слоя. Это интересное явление имеет огромное практическое значение, так как с его помощью можно изготовить полупроводниковые лазеры. В основе лежит следующий факт: электрон и дырка полупроводника могут воссоединиться (рекомбинировать) с излучением фотона.
Чтобы такие переходы происходили непрерывно, надо пропускать через диод электрический ток. Задача состоит в том, чтобы отыскать подходящий материал, который удовлетворяет нескольким требованиям. Прежде всего, ток должен, если так можно выразиться, впрыскивать электроны в полупроводник р-типа, т. е. в полупроводник, который содержит больше дырок, либо должен накачивать дырки в кристалл n-типа. Сказанное есть условие необходимое. Но другие факторы, такие, например, как скорость перехода с верхнего на нижний уровень, могут играть решающую роль. Встречаются такие случаи, когда все факторы благоприятствуют переходу электрона сверху вниз и возникает электролюминесценция.
Особенно удачным для создания электролюминесценции оказался полупроводник арсенид галлия. Он даст достаточное количество фотонов. Фотоны распространяются вдоль р-n-границы. Два участка диода, перпендикулярные границе, полируются, и этим создается резонансная полость. Фотоны, образующиеся при рекомбинации дырки и электрона, оказываются синфазными, и при достаточно больших токах излучение становится таким же, как у лазеров, описанных выше, со всеми вытекающими отсюда следствиями в отношении остроты, направленности и поляризации излучения.
Полупроводниковые лазеры работают в диапазоне волн от ультрафиолета до далекого инфракрасного света и широко используются для самых разнообразных целей.
Глава 2
Оптические приборы
Арсенал приборов, которыми пользуются в лабораториях и промышленности, меняется столь быстро, что исследователь, по каким-то причинам оставивший научную деятельность на пару десятков лет, а затем возвратившийся к своей работе, был бы вынужден учиться заново. Но и сейчас, и, вероятно, в далеком будущем он всегда встретится со своими старыми знакомыми — призмой и линзой. Поэтому напомним читателю простые законы, которым подчиняется ход светового луча при встрече с этими предметами, изготовленными из прозрачных материалов. Впрочем, прозрачность — понятие относительное. Для иных электромагнитных волн прозрачны дерево и бетон.
Законы встречи луча с телами, которые способны отражать и преломлять этот луч, просты до тех пор, пока не заявит о себе волновой аспект света. Они сводятся к закону отражения (угол падения равен углу отражения) и закону преломления света.
Как известно, падая на границу двух сред, луч света отклоняется от первоначального направления. Углы падения i и преломления r связаны соотношением
n = sin i/sin r
Этот закон был установлен тщательными измерениями физиком Виллебордом Снеллиусом (1580–1626), профессором университета в Лейдене. Содержание его курса лекций, в которых рассказывалось о явлениях встречи света с прозрачными телами, было хорошо известно узкому в то время кругу европейских ученых.
Вероятно, по этой причине с насмешкой была принята современниками статья Рене Декарта (1596–1650), опубликованная в 1637 г. под названием «Рассуждение о методе направления разума для поиска научных истин», в которой он вроде, бы «доказал» этот закон с помощью довольно странных для нас рассуждений. Туманные фразы Декарта отнюдь не привели, в трепет восхищения его коллег. А то обстоятельство, что в результате своих рассуждений Декарт пришел к правильной формуле, объясняли весьма просто: подгонкой рассуждений под результат, который был уже известен ранее. Так что Декарту пришлось вытерпеть и обвинение в плагиате.
Пожалуй, можно присоединиться к скептическому отношению современников к этой статье. Декарт рассматривает мяч, брошенный на слабую сетку. Мяч прорывает сетку, и теряет половину своей скорости. Тогда, — пишет великий философ, — движение мяча совершенно отличается от его предназначения в одну или в другую сторону. Понять, что сие означает, трудновато. Возможно, этой фразой Декарт хотел сказать, что горизонтальная составляющая скорости движения мяча не меняется., а вертикальная меняется, поскольку именно в этом направлении сетка препятствует движению мяча.
Но возвратимся к закону преломления. Углы i и r принято откладывать от положения нормали так, как показано на ряс. 2.1.
Величина n, называемая показателем преломления, зависит от сред, о которых идет речь. Чтобы сравнивать тела по их оптическим свойствам, удобно составить таблицу показателей преломления для случая падения луча из воздуха (если быть педантичным, то следует сказать: из вакуума) в среду. В этом случае угол преломления всегда будет меньше угла падения, а значит; показатель преломления будет больше единицы.
Показатель преломления, вообще говоря, расчет с плотностью среды. Так, у алмаза показатель преломления равен 2,4, а у льда 1,3.
Я не стану уделять место таблице показателей преломления. Но если бы мне пришлось это сделать, то я должен был бы указать, для какой длины волны света приводятся данные. Показатель преломления зависит от длины волны. Это важное явление, лежащее в основе действия ряда приборов, разлагающих электромагнитное излучение в спектр, носит название дисперсии.
Если свет падает из более плотной среды в менее плотную, то может произойти полное внутреннее отражение. В этом случае показатель преломления меньше единицы. По мере возрастания угла падения угол преломления будет все больше и больше приближаться к 90°. При условии
sin r = 1, sin i = n
свет перестанет проходить во вторую сроду, а будет полностью отражаться от границы раздела. Для воды угол полного внутреннего отражения равен 49°.
Преломление света плоской пластинкой можно использовать для того, чтобы «сдвинуть», луч, оставив его параллельным caмомy себе. А с помощью призмы луч света можно повернуть.
Если читатель захочет вспомнить вывод формулы угла поворота D луча, то найдет его в школьном учебнике. Вывод требует лишь знания элементарной геометрии, но он очень громоздкий, в особенности если проделать его для толстой призмы и любого, значения угла встречи луча с призмой. Простая формула получается в том случае, если призма тонкая, а угол падения луча на грань призмы не слишком отличается от прямого. Если так, то
D = (n — 1)∙p
где p — угол между гранями призмы.
С помощью призмы в конце XVII века великий изотоп впервые доказал, что белый свет не монохроматичен, а состоит из лучей разных цветов. Сильнее всего отклоняются фиолетовые лучи, слабее всего — красные. Именно поэтому мы говорим «ультрафиолетовые» и «инфракрасные» лучи, а не инфрафиолетовые и ультракрасные.
Научный мир узнал об открытии Ньютона в 1672 г. В описании своих опытов Ньютон ясен и точен. Здесь виден его гений. Что же касается словесного обрамления, то понять его — труд великий. Лишь мучительно пробираясь сквозь лес слов, удается установить одно: хотя автор обещал описывать факты и не создавать гипотез (знаменитое ньютоновское «гипотезис нон финго»), своего обещания он не выполнял. Многие аксиомы и определения, вроде: «луч света — это его мельчайшая часть», звучат на редкость странно для современного уха.
Пока что несет свою службу в химии спектрограф, основной частью которого является ньютонова призма. Материал должен обладать большой дисперсией. Призмы для спектрографа готовят из кварца, флюорита, каменной соли. Исследуемый свет пропускают через щель, которая расположена в главной фокальной плоскости входной линзы. Поэтому на призму падает параллельный пучок света. Фотоны различной частоты пойдут в разных направлениях. Вторая, выходная линза соберет одинаковые фотоны в одной точке фокальной плоскости. При желании можно на спектр посмотреть глазом. Для этого надо поставить матовое стекло. Можно спектр сфотографировать.