В настоящее время спектр регистрируют с помощью самописцев. Вдоль спектра скользит приемник энергии — фотоэлемент или термоэлемент, дающий ток, сила которого пропорциональна интенсивности света.
Этот ток заставляет отклоняться подвижную часть записывающего устройства точно таким же образом, как ток гальванометра отклоняет его стрелку. К отклонившейся части приспосабливается перо; оно пишет спектр на рулоне бумаги, разворачивающейся с постоянной скоростью.
Существует, большая отрасль промышленности, которая изготовляет линзы. Прозрачные тела, ограниченные двумя сферическими поверхностями или одной сферической и одной плоской, встречаются самых разных размеров. В некоторых приборах используются линзы размером с десятикопеечную монету, в больших телескопах диаметр линзы может быть равен нескольким метрам. Изготовление больших линз — это великое искусство, ибо хорошая линза должна быть однородной.
Конечно, каждый из читателей держал линзу в руках и знает основные ее особенности. Линза увеличивает предмет, линза фокусирует лучи. При помощи линзы, поставленной на пути солнечного луча, легко зажечь клочок бумаги. Линза «собирает» лучи в одну точку. Это фокус линзы.
То, что параллельные, лучи сходятся в одной точке, и, наоборот, то, что линза создает параллельный пучок лучей, если точечный источник света поместить в фокусе линзы, доказывается с помощью закона преломления и простых геометрических соображений.
Если точка находится не в фокусе, а на расстоянии а от центра линзы, то исходящие от нее лучи соберутся на расстоянии а'. Эти два расстояния связаны известной формулой:
(1/a) + (1/a') = 1/f
здесь f — фокусное расстояние линзы.
Нетрудно показать, что лучи света, идущие от предмета, расположенного дальше двойного фокусного расстояния, создадут его перевернутое и уменьшенное в отношении а'/а изображение между фокусом и двойным фокусным, расстоянием.
Если перенести предмет в ту позицию, которую занимало изображение, то изображение перейдет в положение, которое занимал предмет. Работает так называемый принцип обратимости хода лучей.
Когда мы используем линзу как лупу, предмет лежит между линзой и ее фокусом. В этом случае изображение не переворачивается и лежит по ту же сторону, что и предмет (рис. 2.2).
Напоминаю различие между случаем лупы и двумя предыдущими примерами: лупа создаёт «мнимое» изображение, а при иных размещениях предмета мы получаем изображения, которые можно увидеть на экране или сфотографировать. С полным основанием мы их называем действительными.
Увеличение лупы тем больше, чем меньше ее фокусное расстояние. Предельные возможности лупы довольно скромные: угол зрения, под которым видно мнимое изображение, удается сделать от силы в 20–30 раз большим угла зрения, под которым мы видим предмет невооруженным глазом.
Многие оптические приборы были бы крайне простыми и состояли бы из одиночных линз, если бы не ряд неизбежных дефектов. Мы хотим чтобы параллельный пучок белого света собирался линзой в одной точке. Но этому мешает явление дисперсии. Ведь фотоны разного цвета будут отклоняться линзой в разных направлениях. В результате вместо точки мы получим растянутую вдоль оси линзы цветную линию. Это хроматическая аберрация.
Другой бедой является сферическая аберрация. Лучи, которые идут ближе к оси линзы, будут фокусироваться в более далекой точке, чем лучи, путь которых лежит подальше от оси.
По-разному ведут себя лучи, падающие на поверхность линзы под большими и малыми углами. Вместо точки мы получаем светящееся ядро, смещенное в сторону от правильной позиции. От ядра отходит хвост. Этот эффект называется комой. Слово «кома» в переводе с греческого означает нечто вроде «распущенные волосы».
На этом далеко не кончается перечень искажений, которые дает одиночная линза. Рассматривая квадрат, мы увидим четырехугольник, вершины которого соединены дугами, «проваленными» внутри. Происходит это потому, что лучи, исходящие из вершин квадрата и из середин его сторон, будут преломляться по-разному.
Большие неприятности доставляет конструкторам оптический приборов дефект, который называют астигматизмом. Если точка лежит вдалеке от главной оптической оси линзы, то ее изображение расщепится на две полоски, перпендикулярные друг другу и смещенные в противоположные стороны по отношению к позиции идеального изображения.
Есть и другие искажения. Специалисты в области производства линз сводят обычно все виды искажений к семи основным типам. Из них мы упомянули лишь пять.
Как это сплошь и рядом бывает в технике, при создании хорошей линзы мы должны избрать некое компромиссное решение. Совершенно ясно, что с размером линзы будут возрастать искажения, но, с другой стороны, освещенность изображения (т. е. число фотонов видимого света, приходящихся на единицу площади) пропорциональна квадрату диаметра линзы (т. е. ее площади). Но это еще не все. Допустим, что предмет, который изображает линза, находится далеко. Тогда изображение соберется в фокусе. Чем меньше фокусное расстояние, тем размер изображения будет меньше. Иными словами, поток света, исходящий из предмета, соберется на меньшей площади. Значит, освещенность будет обратно пропорциональна фокусному расстоянию.
По этим двум причинам светосилой линзы называют квадрат отношения ее диаметра к фокусному расстоянию.
Наименьшим фокусным расстоянием обладают толстые линзы — линзы, поверхности которых образованы малыми радиусами. Но именно такие линзы будут давать наибольшие искажения. Значит, увеличение светосилы линзы — будь то за счет ее размера, будь то за счет радиуса кривизны — приводит к плохому качеству изображения. Нелегкую задачу приходится решать техникам.
Простейший фотоаппарат представляет собой линзу, играющую роль окошка в темном ящике. Изображение, даваемое линзой, фиксируется фотопластинкой, расположенной против окошка.
Но простая линза создает искаженное изображение. Поэтому она заменяется сложной системой линз, которая должна уничтожить оптические несчастья всех сортов. Эта система носит название фотообъектива.
Как же можно избавиться от искажений? Достаточно давно было предложено пользоваться системой линз, подобранных таким образом, чтобы дефекты каждой из них компенсировались дефектами других. Этот принцип получения «плюса» умножением двух «минусов» оказывается возможным осуществить для уничтожения всех семи дефектов с помощью всего лишь трех линз. Однако это лишь в принципе. Для создания наиболее совершенного изображения пользуются более сложными комбинациями. Одна из них (далеко не самая сложная) показана на рис. 2.3. Эта система вогнутых и выпуклых линз способна давать неискаженное изображение при значительном варьировании степени увеличения. Первая и третья компоненты системы перемещаются друг по отношению к другу, чем достигается непрерывное изменение фокусного расстояния в три раза.
Фотоаппарат нуждается в несложном приспособлении, позволяющем «наводить аппарат на фокус». Для этого надо иметь возможность менять расстояние между центром объектива и фотопленкой. Еще до сих пор сохранились фотоаппараты, в которых камера выполняется в форме гармоники, которую можно сжать. И надо сказать, что такие аппараты дают совсем неплохие снимки.
В современном фотоаппарате, умещающемся на ладошке, эта операция выполняется изящнее: винтовым движением оправы объектива. Как ясно из рассуждения о светосиле линзы, качество изображения улучшается, если мы уменьшим елико возможно зрачок камеры. Это достигается с помощью диафрагмы переменного диаметра. Размер диафрагмы мы выбираем так, чтобы он был поменьше, но пропускал достаточно света, чтобы дать хорошее изображение при заданной экспозиции.