В последнее время сотрудники Хохенхаймского университета исследовали поведение сетчатки куриного глаза при резком изменении гравитации. Этот слой ткани, выстилающий заднюю стенку глазного яблока, состоит из нервных клеток. Проводить опыты с ней все равно, что экспериментировать со срезом ткани головного мозга.

Свои эксперименты исследователи проводили в самолетелаборатории. Он поднимался, летел по параболической траектории — при этом возникала невесомость, — и вновь опускался. После каждой стадии полета ученые с помощью видеокамеры следили за тем, как по сетчатке глаза цыпленка расплывается светлое пятно — Spreading Depression Waves, «распространяющиеся тормозные волны».

Обычно подобные волны движутся со скоростью три миллиметра в минуту, распространяясь то по кругу, то по спирали. Вдоль их фронта стихает всякая нервная активность. Ткань становится «электрически мертвой». Лишь через несколько минут она оживает вновь. Этот феномен был известен уже несколько десятилетий.

Однако во время полета наблюдали нечто необычное. Нервная ткань реагировала на невесомость. Всякий раз, когда самолет набирал высоту и возникала гравитационная перегрузка, волна торможения в сетчатке глаза распространялась быстрее. Когда же наступала невесомость, скорость волны падала ниже 3 мм/мин. Наконец, когда самолет пикировал и перегрузки снова росли, броское светлое пятно снова расползалось быстрее.

Ионные каналы в море хаоса

Чтобы объяснить происходившее, придется прибегнуть к одной из математических теорий — «теории хаоса», считает немецкий физиолог Вольфганг Ханке. Любые соединенные между собой в сеть нервные клетки — будь то клетки головного мозга или сетчатки глаза цыпленка, — представляют собой нелинейную систему. Малейшее воздействие на такую систему может привести к непредсказуемым последствиям.

Итак, мозг — это «хаотический орган», реагирующий на любые сигналы извне. Эта догадка пришлась по душе медикам. Они давно подозревают, что приступы мигрени, преследующие иных людей, возникают вследствие волн, распространяющихся в коре головного мозга. Эти волны возникают по малейшему поводу, что характерно для хаотических систем. Внезапный порыв ветра, падение давления, минимальная флуктуация магнитного поля — все это может вызывать появление волн депрессии в головном мозге человека, предрасположенного к ним.

В чем же причина такой чувствительности? Почему даже фрагменты клеточной мембраны реагируют на гравитацию?

Потому, что в них есть ионные каналы.

Эти каналы представляют собой поры в клеточной мембране. Они обладают ограниченной пропускной способностью. Сквозь них могут проникать отдельные ионы — электрически заряженные частицы, например, К(+) или Са(+). При прохождении ионов заряд мембраны меняется.

Впрочем, остается загадкой, почему даже одного ионного канала достаточно, чтобы мембрана реагировала на гравитацию, признает Ханке.

Тем не менее, когда костная ткань человека страдает от невесомости, очевидно, именно ионные каналы в мембранах ее клеток «чувствуют», что действие силы тяжести прекратилось. Очевидно, и наш головной мозг так же реагирует на внешнее возбуждение, как мембрана или сетчатка глаза. И нам надо привыкнуть к тому, что мозг — тончайший прибор и его может «сбить с настройки» любой посторонний сигнал.

Все это заставило исследователей на новом уровне вернуться к проблеме «космической болезни». Так, многомесячные экспедиции советских и американских космонавтов показали, что под действием микрогравитации костная ткань начинает разрушаться. Что же в таком случае будет с головным мозгом? Ведь он в течение многих месяцев, а то и лет будет находиться под действием микрогравитации. Не нарушится ли его работа?..

Александр ВОЛКОВ

Кстати…
Юный техник, 2002 № 08 _16.jpg

ТАНЦЫ В НЕВЕСОМОСТИ

Хотите испытать свой вестибулярный аппарат? Вот несколько простых тестов.

Вытяните руку с повернутой к лицу ладонью на расстояние примерно 30 см. Зафиксировав взгляд на ладони, в течение полуминуты делайте боковые качания головой дважды в секунду. При нормальном функционировании вестибулярного аппарата вы будете четко различать кожные складки на ладони. Это свидетельствует о том, что вестибулярный аппарат посылает приказ глазным мышцам совершить поворот глаз в направлении, противоположном повороту головы.

Теперь держите голову неподвижно, а ладонь перемещайте в одной плоскости примерно с той же скоростью. Складки на ладони не будут такими четкими. Вот вы и убедились на собственном примере, что контроль за положением глаз осуществляется гораздо лучше, когда организм одновременно получает информацию от вестибулярных и зрительных рецепторов, чем только при наличии зрительной информации.

Попробуйте провести еще один опыт — быстро покружитесь на месте, как можно дольше. Помимо головокружения вы испытаете еще одно непонятное состояние, которое с известной степенью достоверности можно назвать удовольствием.

И, наконец, решающее испытание — попробуйте как-нибудь выйти в море на прогулочном корабле. Если уже в начале путешествия вам перестанет казаться мил белый свет, если без особого сожаления вы вдруг захотите отдать свой обед рыбкам за бортом, — значит, с вашим вестибулярным аппаратом не все в порядке, вы подвержены приступам морской болезни.

Тренировать свой вестибулярный аппарат можно с помощью упражнений на качелях или батуте, предлагает доктор медицинских наук, заместитель директора по научной работе Санкт-Петербургского НИИ уха, горла, носа и речи С.В.Рязанцев. А еще… танцами.

Не удивляйтесь, именно с помощью танцев известный французский хореограф Китсу Дюбуа предлагает тренировать свой вестибулярный аппарат даже астронавтам.

«Когда танцор кружится или прыгает, его органы равновесия посылают противоречивые сигналы в мозг, что может привести к головокружению и даже тошноте, — говорит Дюбуа. — Танцоры учатся справляться с неприятными ощущениями, фокусируясь на определенной точке или созданием некого абстрактного «центра гравитации». Эта техника может быть вполне применима и в случае подготовки астронавтов».

Перейдя от слов к делу, хореограф разработала специализированный комплекс упражнений для астронавтов, который они должны выполнять 30–40 минут каждые два дня и добавлять сеанс импровизированных свободных движений каждые несколько недель.

Чтобы подтвердить свою правоту, еще в 1994 году Дюбуа взяла с собой двоих добровольцев в полет на переоборудованном самолете, летающем по длинным параболическим кривым. На нем существовала «микрогравитация» — не совсем невесомость, но что-то близкое к ней. Спутники Дюбуа не были танцорами, но одного из них она обучала танцу в течение 136 часов, обращая внимание на две задачи: способы находить центр тяжести и движения для ориентации тела. Другой был просто контрольной фигурой.

Во время свободного падения она снимала на пленку попытки подопытных выполнить несколько простых заданий, например, обращаться с мячом. После анализа видеозаписи полета выяснилось, что доброволец с хореографической подготовкой справился с заданиями лучше.

В настоящее время Китсу Дюбуа ведет переговоры с Европейским космическим агентством с целью обучения настоящих астронавтов и надеется, что вскоре станет первым в мире космическим хореографом.

С.НИКОЛАЕВ

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…

С чем едят тефлон?

Довелось слышать, что опасно готовить еду в посуде с тефлоновым покрытием. Почему же тогда ее продолжают выпускать?

Марина САДОВНИКОВА,

Новгородская область


Перейти на страницу:
Изменить размер шрифта: