Но этот вопрос не был криминальным для гипотезы кумулятивного эффекта. Никак нельзя было ожидать, что все нуклоны ядер сталкивающихся камней большую часть энергии передадут одной рождающейся частице. Сила удара между любыми макроскопическими телами (камнями) слишком мала, и ядра этих объектов даже не соприкасаются; дело ограничивается соударением между электронными оболочками атомов.
В 1971 году группа физиков-экспериментаторов Лаборатории высоких энергий ОИЯИ под руководством доктора физико-математических наук В. Ставинского обнаружила кумулятивный эффект в реакции с ускоренными ядрами тяжелого изотопа водорода — дейтерия. Пионерские результаты, полученные дубненскими учеными, подтвердили применимость масштабной инвариантности к составным нуклонным системам и правильность теоретических представлений о ядре как о группе микроостровков сплошной адронной материи.
Пи-мезоны, возникающие при взаимодействии релятивистских дейтонов с протонами, получали до 98 процентов всей энергии ускоренных ядер. Но ядра дейтерия — простейшие образования. И физикам необходимо было выяснить, как поведут себя более сложные ядерные системы. А где было взять релятивистские тяжелые ядра, если ускоритель выдавал только дейтоны? Безвыходное положение?
Ничего подобного. Ученые недолго предавались унынию. Совершенно строго, с точки зрения законов механики, и остроумно с самой общей точки зрения, они рассудили, что, если нет возможности бросать релятивистские ядра на протоны, то надо бросать протоны большой энергии на покоящиеся тяжелые ядра мишени. И если регистрировать пи-мезоны, вылетающие под углом 180 градусов к пучку ускоренных протонов, то есть в направлении «назад», то реакция представляется обратной; быстрое ядро налетает на протон; и если кумулятивный эффект существует, то его можно обнаружить, измеряя энергию пи-мезонов.
Именно такой эксперимент и был сделан. Электронная аппаратура зафиксировала, что из ядер углерода, алюминия, меди и свинца вылетали пи-мезоны с энергией до 700 миллионов электрон-вольт. А максимальная энергия, которую пи-мезоны приобретали при обычном столкновении двух протонов, так сказать, один на один, не должна была превышать 244 миллионов электрон-вольт.
Точно такой же результат ученые получили в реакции рождения пи-мезонов с положительным электрическим зарядом и для тяжелых К-мезонов.
Островки адронного вещества в ядрах проявлялись с той вероятностью, которая была предсказана теорией. Судя по энергии вторичных частиц, в столкновении подчас одновременно участвовало до четырех ядерных нуклонов.
Отмечая значительный вклад, который внесли в работу VI Международной конференции по физике высоких энергий и структуре ядра ученые Советского Союза и стран народной демократии, известный американский физик профессор Г. Андерсен сказал: «Многие научные новости на конференции носят восточный акцент».
К этим новостям, несомненно, относились дубненские результаты, полученные в области релятивистской ядерной физики: направления, связанного с принципиально новыми аспектами взаимодействия в ядерном веществе. Наиболее интересные обсуждения завязались как раз вокруг кумулятивного эффекта.
Еще не так давно некоторые недальновидные специалисты говорили, что эра волнующих событий в ядерной физике кончилась и осталась лишь прозаическая задача выяснения деталей. Но атомные ядра продолжают преподносить все новые и новые сюрпризы. Один из таких сюрпризов — кумулятивный эффект; он еще ждет своего более глубокого осмысливания. Особое значение эта проблема приобретает в связи с идеей о кварковой структуре ядерного вещества.
Дейтон — слабо связанная система из двух частиц — при релятивистской скорости превращался в компактное плотное ядро. И только в том случае, когда его два нуклона в ядерной реакции действовали заодно, вылетающие пи-мезоны и получали максимальную энергию. Но каждый нуклон по кварковой модели состоит из трех кварков. Если дейтону с большой энергией удается так сильно «сплотить» свои частицы, то, возможно, в каких-то других реакциях при высоких энергиях он (дейтон) проявит свою кварковую структуру и будет вести себя уже не как двухнуклонный, а как шестикварковый объект.
Дубненские физики готовят сейчас опыты по рассеянию релятивистских дейтонов и ядер гелия для проверки этого предположения. С той же целью американские ученые изучали рассеяние электронов самых больших энергий на ядрах дейтерия. Из результатов эксперимента следует, что в этой реакции дейтон действительно выглядит как шестикварковая частица.
— Создается впечатление, что по мере усиления натиска на атомное ядро оно, подобно хамелеону в момент опасности, меняет свой «облик». Но когда «опасность» минует, ядро опять становится самим собой или нет?
— Смотря, что вы имеете в виду, говоря «меняет свой облик»! В результате реакции ядро может потерять один или несколько нуклонов, разлететься на несколько частей; наконец, перейти в возбужденное состояние. Однако во всех этих случаях главное качество ядерного вещества — его плотность — не меняется.
— Неужели она не поддается никаким внешним воздействиям?
— Категорически утверждать этого нельзя. Как графит при большом давлении превращается в алмаз, так и ядерное вещество, может быть, удастся спрессовать и перевести в сверхплотное устойчивое состояние.
Советский теоретик А. Мигдал предложил одну из самых интригующих современных гипотез о строении ядра, в которой он замахивается как раз на то единственное свойство ядерной материи, которому до сих пор удавалось оставаться неизменным.
При анализе процесса рождения и конденсации электрон-позитронных пар вблизи гипотетических ядер с большим электрическим зарядом у него возникла интересная идея: нельзя ли найти в природе такой источник мезонного поля, в присутствии которого происходило бы интенсивное рождение пи-мезонов? Естественно, что необходимое поле могло возникать только где-то среди большого коллектива связанных нуклонов.
Обдумывание этой задачи привело А. Мигдала к важному выводу: рождение и конденсация пи-мезонов, то есть возникновение так называемого «пи-мезонного конденсата», могло происходить лишь в системе протонов и нейтронов, механические моменты которых ориентированы определенным образом.
К сожалению, современная теория ядерного вещества не позволяет достаточно точно предсказать, при какой именно плотности нуклонов начнут «выделяться» избыточные пи-мезоны. Можно только сказать, что она не должна сильно отличаться от плотности обычных ядер. Если критическая плотность окажется немного меньше ядерной, то конденсат есть свойство обычных ядер и пи-мезонный конденсат связан со слоистой ядерной структурой. Но если появление конденсата присуще только более плотным ядерным системам нуклонов, то ясно, что обычные ядра — неподходящая арена для проявления предсказываемого свойства ядерного вещества. В этом случае, настаивает теория А. Мигдала, ядра могут существовать в особых, сверхплотных состояниях.

Получается так, что двум не очень сильно отличающимся значениям критической плотности соответствуют совершенно разные состояния ядерного вещества.
Ядерные частицы, как мы уже знаем, благодаря постоянному движению на мгновения создают в ядре участки более разреженные или более плотные. Но средняя плотность ядерного вещества остается постоянной. Что же надо сделать с ядром, чтобы проверить, может ли оно стать сверхплотным?
Вполне реальную возможность для проверки сжимаемости ядерного вещества подсказала физика элементарных частиц и, в частности, результат исследований реакции множественного рождения. Одновременно возникающие в одной точке пространства нуклоны, гипероны и мезоны узким, слабо расходящимся потоком устремляются вперед, по направлению создавшей их частицы. Эта особенность ядерной катастрофы, как объясняют теоретики, связана с мгновенным зарождением в адронном веществе быстро передвигающегося сгустка — файербола (огненного шара), который на выходе из ядра распадается на множество отдельных частиц. Файербол вызывает ударную волну, на фронте которой и образуются сгущения ядерной материи.