Один быстрый протон с помощью ударной волны заставляет все нуклоны ядра совершать коллективные движения, обладающие очень большой энергией. А «девятый вал», который возникает при столкновении двух релятивистских ядер, может так повысить плотность нуклонов, что ядро перейдет в новое квантовое состояние — сверхплотное.

Будет ли ядро в этом новом состоянии устойчивым или, наоборот, неустойчивым — неизвестно. В обычных ядрах постоянная плотность поддерживается равновесием между силами притяжения и сменяющими их на малых расстояниях между нуклонами столь же мощными силами отталкивания. Но, может быть, при еще большем сближении ядерных частиц они опять начнут притягиваться друг к другу? Тогда естественно предположить, что на этих сверхблизких расстояниях ядерное вещество «схлопывается» в более компактную, более крепко связанную систему нуклонов.

Образование стабильного ядра с повышенной плотностью должно сопровождаться выделением энергии, в десятки раз большей, чем, например, в реакции деления ядра урана. Поэтому открытие сверхплотного состояния ядерного вещества и возможности искусственного получения сверхплотных стабильных ядер произвели бы настоящий переворот в ядерной энергетике.

Первая статья А. Мигдала с подробным изложением основ новой гипотезы о структуре ядра была опубликована в 1971 году, но осталась как-то не замеченной экспериментаторами. Требовался некоторый срок для преодоления «здорового консерватизма» физиков.

На Международной конференции по физике высоких энергий и структуре ядра в Санта-Фе доклад о последних результатах, полученных группой сотрудников Института теоретической физики АН СССР под руководством А. Мигдала, был прослушан с большим интересом. Внимание к этой оригинальной и достаточно глубоко разработанной идее о сверхплотных ядрах в последнее время подогревается быстрым развитием релятивистской ядерной физики. Появилась надежда, что с помощью ускоренных сложных ядер удастся получить сверхсжатое ядерное вещество.

Недавно в Беркли (США) были проведены первые эксперименты по обнаружению ударных волн во взаимодействиях релятивистских ядер. Однако американским физикам не удалось сделать определенного вывода. Более удачной, по-видимому, оказалась попытка ученых из ФРГ. Исследуя параметры треков вторичных частиц в фотоэмульсиях, которые подвергались облучению потоком релятивистских ядер гелия на синхрофазотроне Дубны, немецкие физики пришли к более определенному заключению: соударение релятивистских ядер рождает ударную волну, которая со скоростью, всего в три раза меньшей скорости света, прокатывается по ядерному веществу.

Физики-экспериментаторы из Калифорнийского технологического института воспользовались тем обстоятельством, что на ускорителе Бевалаке можно было получить ядра аргона с релятивистскими скоростями, и попробовали с их помощью создать сверхплотные ядра. Идея эксперимента заключалась в следующем. Налетающее ядро аргона могло, грубо говоря, проделать отверстие в тяжелом ядре мишени, состоящей из химического элемента свинца. Выбитая колонка (цилиндрик) из спрессованных нуклонов, объединившись с ядром аргона, могла образовать сверхплотное ядро с зарядом, бóльшим, чем у ядра аргона.

Американские ученые не обнаружили в этой реакции вторичных быстрых ядер с большим зарядом. Однако отрицательный результат никого не обескуражил — ни теоретиков, ни самих экспериментаторов. Он мог быть связан просто с недостаточно большой энергией ядер аргона либо с необходимостью использовать более тяжелые релятивистские ядра. Возможно, сверхплотные ядра удастся получить только на специальных релятивистских ускорителях атомных ядер, которых еще нет ни в одной лаборатории мира, но которые уже получили свое название — «нуклотрон».

— А не заглянуть ли ядерщикам в космос, подобно физикам-элементарщикам? Вдруг они найдут сверхплотные ядра на Солнце или в какой-нибудь галактике?

— Да, ученые размышляют о том, где можно найти сверхплотные ядра. Но пока межгалактические трассы еще не открыты; релятивистская ядерная физика помогает человеку осваивать ближайшее к Земле космическое пространство.

Ученые еще мало знают, какой конкретно была далекая юность вселенной, да и то, что о ней известно, в основном результат математических расчетов, экстраполяций назад во времени, в прошлое. Тем легче к этому не совсем ясному прошлому относить появление всего того, чему пока нет четких объяснений.

Этому периоду приписывалось рождение античастиц, таинственных кварков, монополей Дирака. И совершенно естественно было предположить, что если в природе существуют сверхплотные ядра, то они, конечно же, возникали в этой начальной стадии развития вселенной, когда ее вещество было еще сверхгорячим и сверхплотным.

Английский теоретик А. Бодмер называет очень плотные ядра коллапсированными. Коллапсированные ядра — это ядра, в которых частицам удалось преодолеть силы отталкивания и «схлопнуться» в комок размером, приблизительно равным радиусу действия ядерных сил.

Дальнейшая судьба сверхплотных ядер древнейшего происхождения могла быть различной. По гипотезе английского физика, они конденсировались на себе подобных и образовали очень компактные массивные черные дыры или рассеивались в межзвездном пространстве. И наконец, они могли находиться в сообществе с обычной материей. В этом случае при образовании планет и звезд они, как более плотные частицы вещества, попадали в центральную часть массивных тел.

А. Бодмер предполагает, что, если сердцевины звезд и планет содержат значительное количество сверхплотных ядер, то реакция захвата ими обычных ядер может быть дополнительным источником тепла космических объектов.

Оригинальная возможность отопления за счет «съедания» собственных ядер! Не исключено, что генерация гигантской энергии в квазарах и центрах галактик не обходится без эффекта коллапсирования атомных ядер!

Сверхплотные ядра могли сохраниться и в остатках протозвездной материи, которая, как предполагает академик В. Амбарцумян, и сейчас существует в глубинах космоса.

Исследования реакций столкновения частиц с тяжелыми релятивистскими ядрами или самих ядер, возможно, покажут, насколько обоснованы предлагаемые теоретиками гипотезы о коллапсе атомных ядер.

В лобовых столкновениях ядер урана с энергией до 2,5 тысячи миллиардов электрон-вольт ударная волна, по расчетам, сожмет ядерное вещество до плотности, в 100 раз больше нормальной. В таком сгустке сильно нагретого ядерного вещества образуются десятки мезонов, много гиперонов — возникает нечто похожее на протозвездную материю.

Если эта воображаемая ядерная реакция когда-нибудь осуществится в лаборатории, то физика дозвездного состояния вселенной превратится в экспериментальную науку.

Сейчас невозможно говорить о том, когда экспериментаторы будут в состоянии проверить космологический аспект проблемы, связанной с таким необычным состоянием вещества, как сверхплотное. Но уже сегодня релятивистская ядерная физика помогает решению некоторых вопросов, возникающих при исследовании галактического космического излучения.

Поиски сверхтяжелых ядер в космических лучах до сих пор не увенчались успехом. И физики пока не дали удовлетворительного объяснения этому явлению.

Взрывающиеся сверхновые как будто время от времени снабжают межзвездный газ ядрами тяжелых элементов. По современным представлениям о нуклеосинтезе на поверхность Земли должны попадать из космоса сверхтяжелые галактические путешественники. Ядерная астрономия, то есть изучение космоса по регистрации потоков сложных ядер больших энергий, могла бы дать свой серьезный вклад в решение астрофизических проблем, но пока не удается установить контакт даже с нашей родной Галактикой на этом языке. Почему?

Пока не совсем ясно, что происходит с ядрами космического излучения от рождения до того момента, когда они достигают поверхности Земли. Межзвездный газ и пыль очень разрежены. Космическое пространство практически пустое. Однако потоки элементарных частиц и ядер — посланцы далеких звезд — преодолевают столь гигантские расстояния, что даже редкие встречи с космическими пылинками сильно изменяют их первоначальную энергию и массу. По дороге к Земле тяжелые ядра «теряют в весе» за счет реакции распада на легкие осколки при столкновении с другими ядрами. После подобных «дорожных происшествий» поток космических лучей постепенно обогащается изотопами легких химических элементов, и ученые могут только строить разные предположения об исходном составе ядер галактического излучения.


Перейти на страницу:
Изменить размер шрифта: