Но даже этот многоступенчатый процесс, за который приходится расплачиваться весьма дорого (заметьте, ежегодно у нас только в машиностроении при обработке поковок в стружку превращается более 8 миллионов тонн металла), нередко оказывается несостоятельным перед лицом требований, выдвигаемых новой техникой. И причина этому — недостаточная чистота исходного металла.
Первыми, кто «загнал в тупик» традиционную металлургию, были атомная и реактивная техника. Именно они, переживавшие в начале 50-х годов период своего становления, предъявили к конструкционным материалам, и прежде всего к специальным сталям и сплавам на основе железа, никеля и кобальта, исключительно высокие требования. Понадобились металлы, способные в невиданных ранее условиях радиации, высоких температур, давления, в агрессивных средах обеспечить абсолютно надежную работу изготовленной из них техники. А это значило, что надо суметь выплавить почти идеально чистый металл. Способы классической металлургии оказались непригодными.
Стало ясно, что для удовлетворения особо строгих требований металл, получаемый в обычном сталеплавильном агрегате, следует подвергнуть вторичному переплаву, в процессе которого он практически бы полностью очистился от вредных примесей. И добиться этого удастся только в том случае, если будет найден способ совмещения операции получения и операции затвердевания рафинированного жидкого металла.
Ключ к решению поставленной задачи дала сварка.
Еще в конце прошлого века один из пионеров сварочной техники, Н. Славянов, изложил основные принципы дуговой плавки расходуемых электродов, обратил внимание на металлургию процесса сварки. Именно эти идеи и были использованы при создании процесса вакуумно-дугового переплава, или, как его сокращенно называют, ВДП.
Вначале этот способ применяли для изготовления слитков титана, циркония и сплавов на их основе, в которых так нуждались атомная промышленность и реактивная техника. А затем в США начали использовать и для улучшения качества специальных сталей.
В чем же сущность этого процесса? В вакуумной камере между концом расходуемого электрода — это и есть переплавляемая металлическая заготовка, полученная в обычном сталеплавильном агрегате, — и лункой жидкого металла, образующейся в водоохлаждаемой изложнице, куда собирается расплавленный металл, горит дуга. По мере расплавления электрода в кристаллизаторе наплавляется слиток переплавленного металла.
Таким образом выполняется непременное требование к технологии получения высококачественной отливки: приготовление жидкого металла и его затвердевание в виде слитка происходят в едином агрегате. При этом благодаря вакууму и направленной кристаллизации, которой обеспечивается оптимальная скорость, создаются благоприятные условия для глубокой очистки металла от примесей и образования плотной структуры.
Так идеи сварки обогатили металлургию технологией вторичного переплава, которая сыграла в тот период очень важную роль в обеспечении новой техники сплавами особо высокого качества.
Но новый процесс оказался дорогим; для его осуществления необходимы уникальные источники постоянного тока, высоковакуумные мощные насосы. Мог ли он при этом стать основным способом и для массового производства высококачественных сталей, жаропрочных сплавов, которые в несравнимо больших количествах нужны современной технике? На Западе пошли именно по пути широкого использования ВДП, ибо альтернативы такому способу просто не знали. Иначе решили эту проблему советские ученые и инженеры.
Забегая вперед, скажу, что созданная у нас технология электрошлакового переплава получила полное признание и за рубежом, в частности в США, где уже серьезно потеснила вакуумно-дуговой переплав и продолжает наступление на его позиции.
В истории открытия явления, которому суждено было стать основой целой суммы новых технологий, в том числе и электрошлакового переплава, не последнюю роль, как это уже не раз бывало в науке и технике, сыграл «его величество случай».
Произошло это в конце 40-х годов на заводе «Запорожсталь». Здесь инженеры Института электросварки имени Е. О. Патона, участвуя в восстановлении разрушенной во время войны домны, налаживали автоматическую сварку под флюсом вертикальных швов ее кожуха.
И вот однажды случилось нечто весьма странное. Погасла дуга, а сварка тем не менее не прекращалась! Сомнений в том, что плавление сварочной проволоки продолжается, быть не могло — приборы ясно показывали: в сварочной цепи идет ток. А раз так, то оставалось предположить только одно: электрический ток, проходя через жидкий шлак, нагревает его настолько, что выделяемого тепла достаточно для плавления металла. Роль дуги взял на себя шлак!
Открытие электрошлакового процесса, то есть явления генерирования теплоты в расплавленном шлаке при прохождении через него электрического тока, имело далеко идущие последствия.
Вначале был разработан бездуговой сварочный процесс, который получил название электрошлаковой сварки — ЭШС.
Эта первая ЭШ-технология, начавшая применяться для сварки толстого металла, вызвала подлинную техническую революцию в машиностроении.
Один из руководителей нашей промышленности, В. Малышев, говорил, что без электрошлаковой сварки мы не смогли бы после войны в невиданно короткие сроки не только восстановить тяжелую индустрию, но и создать могучий промышленный и оборонный потенциал нашей Родины.
Новый процесс, который за рубежом назвали «Русская сварка», был удостоен на Всемирной выставке в Брюсселе золотой медали «Гран-при». Многие страны приобрели лицензии на советское изобретение, купили аппарат для ЭШС.
Электрошлаковая сварка стала вне конкуренции при создании уникальных по массе и размерам деталей для тяжелого, энергетического и металлургического машиностроения. Именно в этих областях техники наиболее резко проявляется тенденция роста единичной мощности агрегатов. Вспомните турбогенераторы мощностью в миллион киловатт и более, домны, выплавляющие за сутки свыше 10 тысяч тонн чугуна, станы, которым под силу прокатывать стальной лист шириной более пяти метров...
Для изготовления традиционным путем подобной техники необходимы прежде всего громадные слитки, масса которых достигает нескольких сот тонн, а следовательно, нужны печи, способные выплавить такое количество металла, кроме того, мощнейшее кузнечно-прессовое оборудование, чтобы слиток превратить в поковку, огромные термические печи и другое оборудование.
Мы сказали лишь о необходимом оборудовании, но не надо забывать, что и сам процесс изготовления таких слитков, а затем поковок исключительно сложен, связан с колоссальными затратами времени и труда, и при всем этом успех далеко не всегда гарантирован.
Хотя ежегодная потребность в слитках-гигантах не столь велика — максимум несколько десятков, — на создание необходимого для их производства оборудования пришлось бы затрачивать сотни миллионов, а то и миллиардов рублей.
Да, пришлось, не будь электрошлаковой сварки, которая позволила решить задачу иным способом, никогда не применявшимся в мировой практике.
Мы предложили соединить несколько слитков относительно небольшой массы с помощью ЭШС, а затем полученную заготовку подвергнуть ковке.
Идея поначалу вызвала серьезное недоверие, и это понятно, так как никто еще сварные заготовки не подвергал ковке. Сварка всегда была лишь одной из завершающих операций. Но опасения в данном случае были напрасны. Методом электрошлаковой сварки швы получались столь высокого качества, что именно в местах соединения изделие оказывалось наиболее прочным.
Иллюстрируя вначале возможности сварки, я уже приводил пример, как новая технология позволила решить проблему изготовления вала ротора сверхмощного турбогенератора. К этому добавлю лишь, что в Советском Союзе с помощью электрошлаковой сварки изготовлены уже сотни тысяч тонн самых различных конструкций и во всех случаях без ущерба для их надежности.
Вскоре после появления электрошлаковой сварки в нашем институте занялись изучением свойств сварного шва, получаемого этим способом.