Всесторонние исследования не оставили у нас никакого сомнения в том, что электрошлаковый процесс позволяет получить металл с уникальным сочетанием свойств. Металл шва был химически однороден, прочен и одновременно пластичен, чистый и плотный, со здоровой структурой, без дефектов, его физические и механические свойства были практически одинаковыми во всех направлениях. Этот металл по всем характеристикам не только превосходил обычный литой металл (а ведь он сам был литым), но и по многим свойствам оказывался даже лучше деформированного.
Стало ясно, что электрошлаковая сварка как бы смоделировала великолепный процесс вторичного переплава, в котором так нуждалась новая техника. Теперь оставалось конструктивно оформить процесс, чтобы электрошлаковый сварной шов как таковой можно было извлечь из сварного соединения, то есть отделить от соединяемых им кромок и во много раз увеличить его массу, превратив в слиток требуемых размеров.
К 1955 году обе эти задачи удалось успешно решить. Институт электросварки имени Е. О. Патона выдал путевку в жизнь уже второй по счету электрошлаковой технологии. На сей раз электрошлаковому переплаву — ЭШП.
Родилась технология, которая несравнимо проще вакуумно-дугового переплава и при этом ничуть не уступает ему по качеству получаемого слитка.
Острая нужда в особо чистом металле, с одной стороны, а с другой — простота и эффективность электрошлакового переплава определили исключительно высокие темпы распространения новой технологии. Трудно, наверное, найти еще примеры, когда бы крупное техническое новшество столь же стремительно проделывало путь от научных экспериментов до заводских цехов, как это случилось с ЭШП. В 1956 году в Институте электросварки имени Е. О. Патона спроектировали и построили первую в мире опытно-промышленную печь для электрошлаковой выплавки слитков; в 1958 году такая печь начала работать на заводе «Днепроспецсталь» имени Н. А. Кузьмина. А еще через год здесь возник первый в мире цех ЭШП.
С этого момента фактически и начинается история новой отрасли промышленности — специальной электрометаллургии, занимающейся производством металла особо высокого качества и особо высокой надежности.
И хотя вслед за электрошлаковым переплавом в нашем институте были созданы и другие переплавные процессы, скажем, электронно-лучевой, плазменно-дуговой, которые, по сути, решают одну и ту же задачу рафинирования жидкого металла и последующей его принудительной кристаллизации, основой спецэлектро-металлургии был и остается ЭШП.
Замечательные свойства металла, получаемого электрошлаковым переплавом, стали лучшей рекламой этому методу. Наращивание мощностей ЭШП носило буквально лавинный характер. Прошло всего несколько лет — и практически на всех отечественных заводах качественной металлургии и на некоторых предприятиях цветной металлургии работали электрошлаковые печи. У нас в стране построены крупнейшие специализированные цехи, оснащенные десятками таких печей. В Советском Союзе с помощью ЭШП ежегодно производят многие сотни тысяч тонн самых различных марок стали, сплавов.
Электрошлаковый переплав получил признание во всем мире. Показательно, например, что вскоре после международной конференции сталелитейщиков, которая проходила в 1969 году в американском городе Питтсбурге, где об ЭШП советские ученые прочитали доклад, в журнале «Железный век» появилась статья под названием «Готовы вы или нет, но он здесь» с подзаголовком «Патоновский ЭШП дебютирует в США». И надо сказать (об этом я уже упоминал), что именно в США, где созданы огромные мощности по вакуумно-дуговому переплаву, наш ЭШП занял подобающее место и продолжает применяться все шире. А вообще Советский Союз продал в крупнейшие страны Запада более 20 лицензий, получил более 600 зарубежных патентов по электрошлаковой технологии и оборудованию для нее. ЭШ-печи работают во Франции, Японии, Швеции, США, Польше, Румынии, Болгарии и многих других странах.
Нас нередко спрашивают: почему вы, сварщики, занимаетесь спецэлектрометаллургией? Неужели мало у нас металлургов? Ответить на этот вопрос нетрудно.
Прежде всего надо учесть, что никто в столь большой степени не был заинтересован в получении особо чистых металлических материалов, как сварщики.
Чем чище металл, подлежащий сварке, или чем чище присадочный материал (сварочная проволока), тем выше качество сварочного шва и соединения в целом, тем меньше в металле шва и в околошовной зоне различного рода дефектов. Работоспособность и долговечность конструкций, их способность надежно противостоять сложному воздействию различных физических и химических факторов также во многом определяется степенью чистоты свариваемого металла. Вот почему сварщики раньше представителей других специальностей ощутили необходимость повышения чистоты и однородности сталей и сплавов, используемых в сварных конструкциях. И это нашло отражение в оформлении уже самых первых способов электрической дуговой сварки, изобретатели которой не обошли стороной вопросы надежной защиты зоны сварки.
Существенно и то, что сварщики располагают более мощным, чем металлурги, арсеналом средств воздействия на качество металла. Правда, оружие сварщиков отличается весьма скромными параметрами: дуга мощностью всего в несколько киловатт или десятков киловатт, шлаковая ванна, объем которой измеряется лишь несколькими кубическими сантиметрами, и т. д. и т. п. Действительно, по сравнению с современной многотонной электродуговой печью «сталеплавильный агрегат» сварщика не более чем микромир. Тем не менее здесь действуют те же факторы, проявляются те же закономерности, развиваются те же физико-химические процессы и обменные реакции, что и в агрегатах большой металлургии. Но все эти процессы, все эти реакции при сварке протекают чрезвычайно интенсивно, значительно быстрее, чем в металлургии.
При сварке плавлением действует очень своеобразный электрометаллургический агрегат, своего рода комбайн. В нем буквально в считанные секунды протекают процессы расплавления металла, раскисления или окисления и, главное, его глубокого рафинирования, а затем кристаллизации. Причем если в металлургическом производстве процессы получения жидкого металла и его последующей кристаллизации, как уже подчеркивалось, разделены обязательной операцией разливки, то при сварке оба процесса — получение жидкого металла и затвердевание его в виде слитка — совмещены в едином агрегате.
Как же осуществляется электрошлаковый переплав, благодаря каким механизмам, действующим в электрометаллургическом комбайне, получается металл высочайшего качества? Опустим, конечно, технические подробности, которых здесь немало, и расскажем лишь о главном, что составляет суть электрошлаковой технологии.
Прежде всего напомним в самых общих чертах, как происходит ЭШП.
Расходуемый металлический электрод (а это и есть металл, который предстоит переплавить), подключенный к источнику тока, погружают торцом в расплавленный электропроводный шлак. Под действием тепла, которое выделяется в нем при прохождении тока, электрод плавится и капли металла, просочившись сквозь толщу шлаковой ванны, опускаются на ее дно, образуя металлическую ванну. Все это происходит в водоохлаждаемой форме, где металл постепенно, направленно — снизу вверх — кристаллизуется. По мере оплавления электрод подается в шлаковую ванну, и благодаря этому объем жидкого металла в форме непрерывно восполняется.
Таким образом, первое и важнейшее условие, без которого немыслимо создание эффективного процесса переплава, и здесь строго выполняется: все три операции — плавление, разливка и кристаллизация металла — происходят одновременно и в одном месте.
Электрошлаковый переплав можно сравнить с театром одного актера. Действительно, здесь все роли играет шлак. А точнее — сразу пять. Он заменил электрическую дугу и служит нагревательным элементом, тепло которого, во-первых, плавит электрод, а во-вторых, обогревает кристаллизующийся металл, что улучшает структуру слитка. Шлак надежно защищает расплавленный металл от окружающей атмосферы. Еще одна его функция — образовывать на поверхности отливки тонкую корочку — гарнисаж, что в итоге также способствует формированию здоровой отливки, без рыхлости и усадочной раковины; кроме того, отливка получается с такой чистой поверхностью, что, как правило, не нужна и механическая обработка. И последняя по счету, но, конечно, не по значению, — это рафинирующая роль шлака. Ее он выполняет на всех стадиях контакта с металлом: и соприкасаясь с оплавляющимся электродом, и когда капли жидкого металла проходят через шлаковую ванну, и на ее границе с металлическим расплавом.