Некоторые из них могут поставить в тупик. Вырежьте из электропроводной бумаги два подобных, по разных по размерам треугольника и измерьте их сопротивление. Для этого к их соответственным сторонам следует приложить электроды, подключенные к омметру.

Как утверждается в одной из старинных работ, электрические сопротивления подобных треугольников должны быть одинаковы. Здесь напрашивается аналогия с некоторыми вариантами неевклидовой геометрии, где все подобные фигуры, как это ни странно, оказываются равны по площади.

Опыты с распределением силовых линии в проводниках можно проводить не только на электропроводной бумаге, но и на упаковочной фольге, которая для многих будет более доступна, чем электропроводная бумага. В этом случае из-за гораздо более низкого удельного сопротивления металла падение напряжения будет значительно ниже, но цифровой вольтметр с диапазоном 100 мВ это напряжение способен отметить.

Представляют интерес и силовые линии переменного электрического поля. При высоких частотах (несколько килогерц) начинают сказываться эффекты, связанные с индуктивностью и емкостью проводника. Поле в нем сильно отличается от поля постоянного напряжения.

Используя фольгу и звуковой генератор, можно получить картину линий равного потенциала для переменного напряжения. Перпендикулярно к ним, точно так, как мы это делали в предыдущем случае, проведем силовые линии. Измерение потенциалов также можно производить обычным цифровым авометром.

С фольгой можно провести любопытный опыт. Вырежьте из фольги прямоугольную букву «О» и попробуйте ее пережечь разрядом конденсаторной батареи на 100 мкФ при напряжении 220 В. Для безопасности опыта соберите цепь с применением школьного переключателя (рис. 2), работу ведите в присутствии учителя.

Юный техник, 2006 № 04 _39.jpg

Если конденсаторную батарею присоединить к средней части буквы «О», как показано на рисунке, то окажется, что в углах образуются овальные щели, направленные по диагоналям. Их происхождение можно объяснить тем, что часть энергии электрического импульса разряда частично проходит по воздуху в форме радиоволны и лишь по углам входит в металл, нагревая и расплавляя его.

А. ВАРГИН

ПОЛИГОН

Берешь свечу и шарик…

Тепловой двигатель — это, казалось бы, нечто очень горячее. И в самом деле, в двигателе внутреннего сгорания при малейшем нарушении в работе системы охлаждения плавятся поршни. А турбина электростанции работает от водяного пара, температура которого столь высока, что подводящие трубы светятся…

Тем не менее существуют двигатели, способные работать от тепла… руки. Но это как говорится, — высший пилотаж. Для начала построим двигатель, работающий от свечки.

Создал этот двигатель японский мастер-любитель из технической школы профессора Коиши Хирата. В отличие от многих изобретателей и ученых, хранящих в тайне малейшее достижение, профессор Хирата ничего не скрывает. По его чертежам подобные двигатели сможет сделать любой из вас.

Но обо всем по порядку. Речь пойдет о двигателях, которые работают за счет расширения нагретого воздуха. Первый такой двигатель изобрел в 1816 году — не удивляйтесь — шотландский министр по делам религии Роберт Стирлинг.

Юный техник, 2006 № 04 _40.jpg

Первый двигатель Стирлинга работал на каменном угле и был весьма сложен. Но сама идея вдохновила множество изобретателей, и к концу столетия развернулось массовое производство воздушных тепловых двигателей. В небольших мастерских их топили углем, дровами, соломой и даже мусором. Некоторые из них проработали без ремонта полвека и стали ценнейшей музейной редкостью.

Сегодня подобные двигатели в мастерских не встретим, их заменили электромоторы. Но двигатели Стирлинга не забыты. На их возрождение в США и в Европе истрачены сотни миллионов долларов. В современных стирлингах воздух заменили сжатым водородом и получили мощные легкие машины. Их успешно ставят на подводные лодки, автомобили, локомотивы и солнечные электростанции. Со временем мы об этом расскажем подробнее, а сейчас вернемся к работам профессора Хирата. Это очень крупный специалист по стирлингам. В сферу его интересов входят двигатели для судов, автомобилей и даже самолетов.

Двигатель Стирлинга по конструкции прост, но понимание принципа его работы дается людям нелегко. Поэтому профессор уделяет немало времени разработке простейших стирлингов, которые можно сделать за один день и, почувствовав прелесть их работы, решиться на какие-то более серьезные шаги. Вот одна из конструкций.

Возьмите жестяную баночку диаметром примерно 50 мм и укрепите на ней нитками или резиновым кольцом кусочек резины от воздушного шарика (рис. 1). После этого нагрейте дно баночки на свечке. Резинка раздуется (рис. 2). Это значит, что произошел переход тепла в работу растяжения резины. Подуйте на баночку, и увидите, что резинка втянется (рис. 3).

Юный техник, 2006 № 04 _41.jpg

Убедимся, что воздух расширяется и сжимается.

Как видите, при нагревании и охлаждении баночки происходит переход тепла в работу. Но превращать баночку в двигатель не стоит: у вас в руках очень несовершенная машина. Прежде всего, она недолговечна, поскольку резиновая пленка соприкасается с горячим воздухом и от этого быстро разрушается. Да и КПД получится очень мал. Ведь почти все тепло, потраченное на нагревание воздуха, теряется при его охлаждении. Профессор Хирата оба недостатка устраняет с помощью одного и того же приема, придуманного еще Робертом Стирлингом — введением вытеснителя.

Взгляните на рисунок 4. Вытеснитель — это деревянный цилиндр, с небольшим зазором вставленный в баночку. Он привязан на леске, а леска пропущена через крохотное отверстие в резиновой пленке.

Начнем с того момента, когда в баночке воздух холодный, а вытеснитель лежит на ее дне. Если зажечь свечу, то воздух почти не нагреется. Но вот мы потянули за леску, подняли вытеснитель (рис. 5а), и резинка раздулась. Это произошло потому, что у дна воздух нагрелся и его давление, по закону Паскаля, передалось холодному воздуху.

Обратите внимание, резинка раздулась от давления холодного воздуха и, значит, сможет долго работать, не разрушаясь.

Применение вытеснителя полезно и по другой причине. Согласно законам термодинамики, чем выше температура рабочего тела (воздуха), тем выше КПД. Ради этого мы можем поднимать температуру неограниченно, лишь бы выдержали стенки.

Если вытеснитель опустить, то поступление тепла через дно прекратится и оно станет уходить через стенки (рис. 5б). Воздух остынет, и пленка снова втянется в баночку. Таким образом вытеснитель выполняет роль переключателя потоков тепла. Имея такое устройство, профессор Хирата переходит к размышлениям о конструкции двигателя.

Юный техник, 2006 № 04 _42.jpg

Действие вытеснителя.

Представьте себе согнутый из проволоки кривошип, который автоматически поднимает и опускает вытеснитель (рис. 6, 7, 8).

Юный техник, 2006 № 04 _43.jpg

Кривошип перемещает вытеснитель.

Добавим к нему согнутый из той же проволоки второй кривошип, расположенный под углом 90° к первому, а на него наденем шатун — деревянную палочку такой длины, чтоб она постоянно соприкасалась с резиновой пленкой (рис. 9).

Юный техник, 2006 № 04 _44.jpg

Перейти на страницу:
Изменить размер шрифта: