Когда он неожиданно умер от ущемления грыжи, его прах был похоронен в Вестминстерском Аббатстве, к востоку от захоронения Ньютона и рядом с лордом Кельвином, в присутствии короля и представителей правительства.
Резерфорд, который считается выдающейся фигурой в развитии физики, был человеком вулканической энергии, огромного энтузиазма, исключительной работоспособности и твердого здравого смысла. Один из его сотрудников сказал, что он является человеком «не симпатичным, но просто великим». Фальшивая скромность была неведома ему.
Рис. 16. Рисунок атома Резерфорда. Пример в отношении водорода. Электрон (отрицательный заряд) вращается вокруг ядра (положительный заряд) подобно вращению Земли вокруг Солнца
В 1911 г. он постулировал модель атома, в которой было, наконец, дано правильное распределение отрицательных (электронов) и положительных зарядов. С помощью эксперимента, который стал классическим в истории физики, он продемонстрировал, что сильная концентрация положительного заряда помещается в центральной области каждого атома, в которой также сосредоточена большая часть массы атома. Эта центральная часть, которая по размерам, по крайней мере, в 100 000 раз меньше, чем весь атом, и в настоящее время обозначается как атомное ядро. Отрицательный заряд, которым окружается ядро, образуется электронами, которые вращаются вокруг ядра под действием сил электрического взаимодействия. Поскольку атом в целом электрически нейтрален, общий заряд электронов, вращающихся вокруг ядра, должен быть равен положительному заряду ядра (рис. 16).
Атомы различных элементов содержат разное число электронов, вращающихся вокруг ядра. К этому заключению пришли последовательно, отталкиваясь от открытия Менделеевым: химические элементы можно расположить в последовательности с прогрессивно увеличивающимися атомными весами в таблице Менделеева так, что элементы со сходными химическими свойствами располагаются в одной определенной колонке. Позднее (1913 г.) английский физик Генри Г. Дж. Мозли (1887-1915), который погиб молодым в Галлиполи во время Первой мировой войны, выполнил серию экспериментов по рассеянию атомами рентгеновских лучей. Эти эксперименты позволили ему определить число электронов, которые содержит атом. Он показал, что перемещение одного элемента до другого соседнего в таблице Менделеева получается путем добавления электрона. Таким образом, было установлено, что число электронов в атоме конечно и много меньше, чем воображали. Водород является простейшим атомом с одним электроном, гелий имеет два, и т.д. вплоть до самого тяжелого элемента — урана, известного в то время, который содержит 92 электрона (сегодня искусственно создают атомы с числом электронов до 118).
Мы можем сказать, что эта модель атома подобна системе планет, вращающихся вокруг Солнца под действием сил всемирного тяготения, с важным отличием, которым нельзя пренебрегать. Электроны, которые вращаются вокруг ядра, несут электрический заряд и поэтому должны, согласно законам электромагнетизма Максвелла, испускать электромагнитные волны подобно антенне радиовещательной станции. Но поскольку эти «атомные антенны» много меньше, электромагнитные волны, испускаемые атомами, в миллиарды раз меньше тех, что испускаются обычной антенной. Эти волны лежат в видимом диапазоне, и их испускание делает тела светящимися.
Таким образом, согласно модели Резерфорда, электроны, которые вращаются вокруг ядра, должны испускать световые волны, и поскольку эти волны несут энергию, электроны будут терять свою кинетическую энергию из-за испускания ими излучения. Легко рассчитать, что если это так, то все электроны атома полностью потеряют свою кинетическую энергию за пренебрежимо малую долю секунды и должны упасть на поверхность ядра.
Однако наблюдения показывают, что это не так, и атомные электроны бесконечно долго вращаются вокруг ядра на относительно большом расстоянии от них. Вдобавок к этому противоречию с фундаментальной природой атома, имеется ряд других несоответствий между теоретическими предсказаниями и экспериментальными результатами. Например, опыт говорит, что атомы излучают свет только определенных цветов или длин волн (спектральные линии, которые обсуждались в главе 2), в то время как движение электрона в модели Резерфорда должно приводить к излучению всех цветов (т.е. всех длин волн).
Нильс Бор
Команда молодых людей, собравшихся в Манчестере вокруг Резерфорда, были в основном физиками-экспериментаторами. Они были похоже на самого Резерфорда, который, несмотря на свою образование, не предавал большой важности теории и был, по существу, экспериментатором. Он заявил однажды: «Когда молодой человек в моей лаборатории использует слово "вселенная", я говорю, что самое время ему убираться вон». «А почему же вы доверяете Бору?» — спросили его. «Ну, он же футболист!» — ответил Резерфорд.
Кафедра в Манчестере, в одном из провинциальных английских университетов, была занята Резерфордом, когда спектроскопист сэр Артур Шустер решил уйти в отставку. Шустер, немецкого происхождения, унаследовал состояние, которое он частично использовал для обеспечения своего института прекрасной лабораторией, поддерживая таких физиков-теоретиков как Г. Бейтмен (1882—1946), Ч. Г. Дарвин и молодой датский физик Нильс Бор (1885-1962).
Нильс родился в Копенгагене в состоятельной семье. Его отец был хорошо известный профессор физиологии, мать происходила из семьи английских банкиров еврейского происхождения.
В то время Дания была культурным водоразделом между английскими и германскими традициями, что давало удачный синтез английской экспериментальной науки с более формальным теоретическим подходом германских университетов. Во многих отношениях характер Бора сочетал британское влияние, происходящее от эмпиризма здравого смысла Локка с типичными германскими подходами Канта относительно субъективных и объективных аспектов опыта.
У Бора была старшая сестра, Дженни, и старший на полтора года брат, Харальд (1887—1951). Между братьями всегда были замечательные отношение, и это имело важное влияние на метод работы Бора. С детства братья старались выражать свои мысли в форме оживленного диалога, тем самым развивая содержательный и диалектически обмен мнениями. Их непрерывный диалог приучил Бора к необходимости вырабатывать свои идеи путем обсуждения их с собеседником. Такая форма общения с Харальдом, который позднее стал знаменитым математиком и директором Института математики, расположенным, кстати, рядом с Институтом теоретической физики Нильса, дала ему математические данные необходимые в его работе.
Весной 1911 г. Нильс закончил и защитил свою докторскую диссертацию по электронной теории металлов. На рубеже столетий несколько выдающихся физиков, основываясь на доказательствах существования электронов во всех веществах, данных Дж. Дж. Томсоном, и на теории поведения электронов, данной X. А. Лоренцем, старались объяснить все физические явления, как следствия взаимодействия электронов друг с другом и с окружающими атомами и молекулами.
Первый успех был достигнут в теории металлов. Томсон, Лоренц, Поль Друде (1863—1906) и другие получили многообещающие данные из экспериментов на основе предположения, что электроны движутся в металлах подобно молекулам в идеальном газе. В 1990 г. Друде заключил, что отношение теплопроводности к электропроводности должно быть одно и то же для всех металлов и прямо пропорционально абсолютной температуре. Его выражение, однако, отличалось в два раза от экспериментально полученного значения. Лоренц в 1905 г. получил результаты, лучше согласующиеся с экспериментом, рассматривая свободные электроны в металле с помощью статистических методов, применимых в случае газов. Даже излучение, испускаемое при нагревании металлов, было в 1903 г. рассчитано Лоренцем, а Поль Ланжевен (1872— 1946) представил в 1905 г. теорию магнитного поведения.