Бор в своей диссертации рассмотрел все эти разные проблемы и пришел к заключению, что электронную теорию металлов можно модифицировать так, чтобы дать результаты, согласующиеся с экспериментами, причем внутренняя структура атомов не принимается во внимание. Напротив, проблема излучения и объяснение магнитного поведения требуют новых радикальных гипотез, относительно которых у него нет идей.

В то время докторская степень давала возможность провести постдокторское исследование за границей, и поскольку в диссертации обсуждалось поведение электронов в металлах, то вполне понятно, что Бор выбрал поездку в Кембридж, чтобы работать с Дж. Дж. Томсоном.

Первая встреча с Томсоном не установила хороших отношений между ними. Бор вошел в кабинет Томсона с книгой, открыл ее и вежливо сказал: «Этот пункт неверен». Надо сказать, что в то время Бор не очень хорошо владел английским языком и поэтому выражал свои мысли в виде коротких фраз. Во всяком случае в октябре 1911 г. он писал своему брату Харальду:

«...с Томсоном пока нелегко иметь дело, как я думал в первый день. Он прекрасный человек, исключительно умен и полон воображениями (ты бы послушал одну из его элементарных лекций) и весьма приветлив; но он так сильно занят многими вещами и настолько погружен в свою работу, что очень трудно поговорить с ним. Он до сих пор не нашел времени прочесть мою работу (его диссертацию), и я не знаю примет ли он мой критицизм».

Фактически Томсон прекратил работу по теории металлов, и более того, импульсивно отверг тесное сотрудничество и постоянные разговоры с Бором, нужные ему для развития идей. Тем не менее во время своего пребывания в Кембридже Бор познакомился с работой Томсона о моделях атомов и пришел к пониманию их фундаментальной несостоятельности, но в целом он был неудовлетворен.

Атом Бора и Резерфорда

За год до прибытия Бора в Англию Резерфорд сделал открытие атомного ядра, и осенью 1911 г. эти два человека встретились и, несомненно, понравились друг другу. Поэтому в марте 1912 г. Бор отправился из Кембриджа в Манчестер с намерением проводить эксперименты в области радиоактивности. Здесь он стал изучать замедление альфа-частиц при прохождении их через вещество, затем после нескольких недель он начал концентрироваться на теоретических аспектах, рассматривая взаимодействие альфа-частиц с электронами атома. Так он улучшил теорию одного из сотрудников Резерфорда, Ч.Г. Дарвина (1887—1962) — внука отца теории эволюции Ч.Р. Дарвина. Его Бор называл «внук настоящего Дарвина». Ч.Г. Дарвин предположил, что альфа-частицы, проходящие через вещество, теряют свою энергию в основном за счет столкновений между альфа-частицами и электронами в атомах. В своей модели Дарвин рассматривал электроны как свободные (не подверженные каким-либо силам), и Бор уточнил эту модель, рассматривая электроны, которые окружают ядро как «гармонические осцилляторы», т.е. предполагая, что они связаны с ядром упругими силами и что их энергии квантованы согласно квантовым правилам Планка. Бор окончил эту работу только после отъезда из Манчестера, и результат был опубликован в 1913 г. Это исследование пробудило интерес Бора к проблеме строения атома. Уже в Манчестере он стал набрасывать идеи о стабильности атома; совершенно новые идеи, о которых он предварительно сообщил Резерфорду.

Бор оставил Манчестер 24 июля 1912 г., чтобы возвратиться в Данию, где он 1 августа женился на Маргрете Норлунд. В течение весны и лета он осознал, что открытие Резерфордом атомного ядра было ключевым камнем конструкции модели атома, и никакой атом Резерфорда нельзя представить как механически стабильную систему, согласующуюся с законами классической физики. В то же время он убедился, что выдвижение квантов могло бы сыграть роль в разработке любой атомной теории.

В начале 1913 г. X.М. Хансен (1886—1956) — молодой человек из Копенгагена, который выполнял экспериментальные исследования по спектрам в Геттингене, — обратил его внимание на открытие, сделанное Бальмером в 1885 г., согласно которому свет, испускаемый водородом, содержит только определенные частоты, которые могут быть выражены простой формулой — как разность между двумя термами (см. главу 2). Этот факт должен был бы быть следствием любой теории, описывающей атом водорода, и это стимулировало Бора найти решение этой проблемы. Немедленно, он с увлечением написал три фундаментальные работы, в которых он построил свою революционную теорию атома, основываясь на постулатах своей модели, для объяснения образования атомных спектров. В первой из этих работ (во второй и в третьей он развивал и уточнял теорию) он объяснил в общем виде строение атомов и молекул, и в значительных деталях атом водорода путем введения некоторых постулатов. Они позднее были подтверждены последующим развитием квантовой теории. Эти постулаты позволили ему объяснить непонятные факты, которые вытекали из модели Резерфорда. Он понял, что требования применять законы классической механики к атому совершенно не приемлемы. Действительно, нет причин полагать, что классические законы, разработанные для объяснения движения небесных тел или для тел, окружающих нас, должны быть справедливыми и для тел с размерами в миллиард раз меньшими.

Когда Бор боролся с этими проблемами, Планк уже установил, что испускание и поглощение света происходит только конечными величинами энергии, которые он назвал квантами. А Эйнштейн, как мы увидим в следующей главе, уже дал свое объяснение фотоэффекта в рамках квантов света. Так, Бор полагал, что принцип квантования энергии справедлив для любой системы. Поэтому механическая энергия системы должна быть квантована, т.е. можно предположить только некоторые дискретные значения, и энергия системы может изменяться не произвольно, а только дискретными значениями. Системы можно представить себе как маленькую башню из кирпичей (рис. 17), высоту которой можно изменять, только снимая или добавляя толщину кирпича. Подобным же образом энергия системы может увеличиваться или уменьшаться, но не на произвольную величину, а на величину, которая соответствует минимальному кванту (кирпич на предыдущем примере). Разумеется, мы заметим эту дискретность, если минимальная энергия кванта, на которую может происходить изменение, достаточна для того, чтобы быть измеренной, В большинстве случаев это не имеет место, поскольку минимальная величина, на которую может изменяться энергия, так мала, что изменение может показаться непрерывным. В системах крайне малых размеров это уже несправедливо и квантование энергии становится очень важным.

Электроны модели Резерфорда не падают на ядра по той простой причине, что они обладают минимумом энергии, соответствующей условиям модели, и поскольку это минимум энергии, она, по определению, не может еще уменьшиться, и движение электронов должно вечно продолжаться.

История лазера i_018.jpg

Рис. 17. В квантовой теории энергия системы может изменяться лишь дискретно, точно так же как высота кирпичной кладки может изменяться лишь на толщину кирпича

Если мы попробуем добавить энергии атому, то первый квант этой энергии полностью изменит состояние движения атома и переведет его электрон в так называемое первое возбужденное состояние. Для того, чтобы возвратиться в свое нормальное состояние, наш атом должен испустить количество энергии, которое он прежде получил, и среди разных возможностей (это может быть, например, столкновение с другим атомом) он может испустить ее в форме одиночного кванта света, который согласно одному из постулату Бора имеет вполне определенную длину волны. В теории Бора разрешенные состояния энергии даются таинственным соотношением, которое устанавливает, что угловой момент электрона в атоме (произведение импульса электрона на радиус его орбиты) может принимать только дискретные значения, которыми являются произведения целых чисел на константу Планка h/2π.


Перейти на страницу:
Изменить размер шрифта: