Мы можем прекратить все сетчаточные сигналы движения и посмотреть, что произойдет при пассивном перемещении глаза. Это можно легко сделать с помощью засвета ярким светом (или фотографической вспышкой), чтобы получить последовательный образ. Это вызовет утомление одного определенного места сетчатки, соответствующего фотографической вспышке, и этот образ будет передвигаться точно вместе с глазом, так что, хотя глаз и будет двигаться, сигналы от перемещения изображений по сетчатке не смогут возникнуть. Если мы будем наблюдать за последовательным образом в темноте (чтобы избежать фона), мы обнаружим, что, когда глаза пассивно приводятся в движение пальцем, последовательный образ не перемещается. Это очень убедительный довод против афферентной теории, так как активность рецепторов растяжения должна была бы вызвать перемещение последовательного образа вместе с глазом, если бы эта активность в обычных условиях тормозила сетчаточные сигналы движения.

Теперь, если глаз будет двигаться произвольно, мы обнаружим, что последовательный образ перемещается вместе с глазом. Куда бы глаз ни переместился, последовательный образ будет следовать за ним. Гельмгольц при объяснении этого факта исходил из предположения, что здесь мы имеем дело не с афферентной активностью, идущей от глазных мышц, вовлеченных в движение, а с эфферентными сигналами команды, управляющими движением глаз. Эта эфферентная теория, как мы уже видели, утверждает, что сигналы команды регулируются внутренней замкнутой системой мозга и подавляются сетчаточными сигналами движения. Когда этих сетчаточных сигналов нет, как в случае с последовательным образом, видимым в темноте, мир вращается вместе с глазом, потому что сигналы команды не тормозятся сетчаткой. Пассивные движения глаза не вызывают движения последовательного образа, так как в этом случае нет системы, которая давала бы сигналы движения.

В клинических случаях, при каких-либо нарушениях глазных мышц или их нервного аппарата, у пациентов появляется ощущение вращения окружающих предметов, когда они пытаются двигать глазами. Их мир движется в том же направлении, в котором они намеревались двигать глазами. Это происходит также и тогда, когда мышцы глаза парализуются с помощью кураре — южноамериканского яда для стрел, Немецкий ученый Эрнст Мах фиксировал свои глаза мастикой так, что они не могли двигаться, и он получил те же результаты.

Система глаз/голова, таким образом, приводится в действие не фактическими движениями глаз, а командой двигать глазами. Она работает даже в тех случаях, когда глаза не повинуются команде. Удивительно, что сигналы команды могут вызывать восприятие движения: принято думать, что восприятие движения исходит от глаз, а не от находящихся в глубине мозга аппаратов, контролирующих движения глаз.

Почему же возникла такая странная система? Это тем более удивительно, что в глазных мышцах действительно были обнаружены рецепторы растяжения. Афферентная система, или система обратных связей, по-видимому, действовала бы слишком медленно: пока сигнал обратной связи достиг бы мозга, чтобы затормозить сетчаточные сигналы движения, было бы слишком поздно.

Тормозящий сигнал мог бы начаться в тот же самый момент, что и команда к движению глаз, и тогда он мог бы затормозить сетчаточный сигнал без опоздания. Действительно, для того чтобы сигнал сетчатки достиг мозга, требуется немного времени («время сетчаточной реакции»), но тогда сигнал команды пришел бы в мозг для затормаживания сетчаточного сигнала слишком рано, однако этот сигнал команды задерживается, чтобы совпасть по времени с сигналом сетчатки. В этом мы можем убедиться при тщательном исследовании движения последовательного образа при произвольных движениях глаз. Всякий раз, когда глаз двигается, требуется некоторое время, чтобы возникло движение последовательного образа, и, очевидно, эта отсрочка и приводит к тому, что управляющий командный сигнал достигает мозга не раньше, чем сигнал от сетчатки. Можно ли представить себе более совершенную систему?

ИЛЛЮЗИИ ДВИЖЕНИЯ

Теперь мы обратимся к некоторым иллюзиям движения. Подобно другим иллюзиям, они имеют практическое значение и могут приблизить нас к пониманию закономерностей процессов восприятия.

СЛУЧАЙ С БЛУЖДАЮЩИМ СВЕТОМ

Читатель, может быть, захочет провести следующий опыт. Для этого нужна одна зажженная папироса, положенная на пепельницу в дальнем конце полностью затемненной комнаты. Если наблюдать за тлеющим концом папиросы в течение нескольких секунд, можно обнаружить, что свет беспорядочно блуждает по комнате, то устремляясь в каком-то одном направлении, то слегка колеблясь из стороны в сторону. Это движение может быть парадоксальным, огонек будет казаться в одно и тс* же время движущимся и, однако, не меняющим своего положения. Этот парадокс восприятия важен для понимания не только этого феномена движущегося света, но и для понимания самой основы того, каким образом движение представлено и закодировано в нервной системе.

Этот эффект света, движущегося в темноте, известен как аутокинетический феномен. Ему посвящено множество дискуссий и экспериментальных работ. Десятки теорий выдвигались для его объяснения, он использовался даже в качестве показателя внушаемости и группового взаимодействия: одни люди в большей мере обнаруживали тенденцию видеть движение света в одном и том же направлении, чем другие, хотя на самом деле он, разумеется, был неподвижен.

Для объяснения этого эффекта привлекались самые различные теории. Утверждалось, что небольшие частицы, плавающие в глазной жидкости, которая находится в передней камере глаза, могут дрейфовать, становясь смутно видимыми в этих условиях. Предполагалось далее, что кажутся движущимися не частички, а пятно света, подобно тому как луна может казаться проносящейся по небу ночью, когда ветер быстро гонит облака. Этот эффект, известный под названием «индуцированное движение», будет рассмотрен ниже. Имеется, однако, достаточно фактов, говорящих о том, что это явление не имеет отношения к аутокинетическому феномену, так как движение возникает в направлении, не связанном с направлением дрейфа частичек в глазу (они становятся более ясно видимыми при наклонном освещении глаза); то же имеет место и во всех других случаях, когда частицы обычно вообще не видны. Другая теория, которая в общем, несмотря на ее несостоятельность, принимается офтальмологами, состоит в том, что глаза не могут сохранять фиксацию точно на источнике света, видимого в темноте, и что отклонение глаз является причиной блуждания изображения светового пятна по сетчатке, что и вызывает впечатление кажущегося движения света. Эта теория была полностью опровергнута в 1928 году Гилфордом и Далленбахом, которые фотографировали глаза в то время, когда субъект наблюдал за световым пятном и сообщал, видит ли он движение и в каком направлении. Движение светового пятна, о котором сообщал испытуемый, сопоставлялось с фотографией реальных движений глаз; при этом не было обнаружено никакого соответствия между этими двумя группами данных. Более того, движения глаз в этих условиях были исключительно малы. Этот эксперимент, по-видимому, прошел в значительной мере мимо внимания исследователей.

Все попытки, кроме одной, объяснить блуждание света в темноте, исходили из предположения, что нечто двигается: или частицы в глазной жидкости, или глаза, или своего рода внутренние схемы. Последнее предположение составляло важную часть теории восприятия гештальтпсихологов. Они придавали большое значение эффекту движущегося света. Коффка в своей знаменитой «Гештальтпсихологии» в 1935 году писал:

«Эти «аутокинетические движения», следовательно, доказывают, что наблюдаемое явление не фиксировано ни в одном из участков сетчатки; оно локализуется внутри некой схемы и исчезает, когда схема устраняется… Аутокинетические движения представляют собой наиболее впечатляющий пример существования и функциональной эффективности общей пространственной схемы, но действие этих внутренних схем распространяется на весь наш опыт».


Перейти на страницу:
Изменить размер шрифта: