Если рисунок или фотография предъявляются таким образом, что фактура бумаги, на которой они изображены, не заметна — что можно сделать путем просвечивания их в темной комнате, — тогда перспективные или другие признаки глубины изображения будут выступать с удивительной ясностью, как бы стереоскопически. В обычных условиях художнику в значительной мере мешает фактура холста его картины, но ученому следовало бы помочь ему в его желании устранить этот парадокс и внушить зрителю впечатление глубины, которой он в действительности не видит.
Когда изображение передается одними линиями, чтобы показать расстояние до объектов и их ориентацию в пространстве, прибегают к штриховке. Она может использоваться также для того, чтобы обозначить, каким образом объект располагается на фоне. Чтобы изобразить ровную поверхность, затенения производят пунктиром или линиями, расположенными на равном расстоянии друг от друга, неравномерная по глубине поверхность передается линиями, расстояния между которыми неодинаковы.
Штриховка может также изображать тень, и это нечто иное по сравнению с однообразием поверхности фона. Тени указывают на направление света, падающего на предмет, а также говорят нам, в каком месте другой предмет загораживает свет. Тень может быть отброшена и выпуклыми деталями объекта — как это происходит, когда фактура предметов выявляется с помощью теней, — и тогда по форме и направлению теней мы судим о фактуре поверхности предмета и направлении освещения. Это весьма важный технический прием. Когда мы смотрим одним глазом, тени являются важной информацией, дающей нам представление о глубине, довольно сходное с тем, которое возникает при бинокулярном зрении. Источник света, показанный с помощью теней, замещает отсутствующий глаз художника.
Рассмотрим обращенное к нам лицо, освещенное сильным боковым светом. Форма носа в профиль фактически показана тенью на щеке (рис. 10, 16).
Рис. 10, 16. Два положения лица, видимые на фотографии, снятой под одним углом зрения; тень показывает профиль носа.
Таким образом, тень дает нам другое представление о форме носа. Тот же самый эффект имеет место, когда мы рассматриваем Луну через телескоп: фактически наши знания рельефа кратеров и лунных гор складываются из наблюдений за тенями, отбрасываемыми ими при косых солнечных лучах. Можно измерить длину этих теней и сделать точные выводы о высоте и форме лунных гор. Наша перцептивная система именно так и поступает в большинстве случаев, ведь мы видим мир плоским, если источник света находится позади нас и теней нет.
Как уже было сказано, восприятие глубины может изменяться, если с помощью оптических приборов подать на левый глаз изображение, получаемое в обычных условиях правым, и наоборот (см. главу 4). Довольно интересно, что извращение восприятия глубины, основанное на тенях, видимых одним глазом, может также возникать в тех случаях, когда источник света, дающий тени, помещается не на обычном месте. Дело в том, что свет, как правило, падает сверху: солнце не освещает предметы снизу, даже когда оно находится за линией горизонта, да и искусственный источник света обычно помещается сверху. Однако, если освещение идет снизу, мы склонны видеть глубину в перевернутом виде точно так же, как это происходит в случае оптической замены изображений левого и правого глаза.
Этот эффект был ранее описан несколькими исследователями. Дэвид Брюстер (1781–1868) указывает на него в своих «Письмах о естественной магии», где он пишет, что, если направление света, падающего на середину монеты, меняется с верхнего на нижнее, углубления начинают восприниматься нами как выпуклости, а выпуклости — как углубления: инталии превращаются в камеи и наоборот. О подобном наблюдении было сообщено и на одном из ранних заседаний Королевского Общества, оно было сделано одним из членов этого общества, который рассматривал монету под микроскопом. Брюстер пишет:
«Эти иллюзии», являются результатом деятельности нашего собственного разума, результатом нашей оценки форм тел на основании тех знаний, которые нам сообщают свет и тень».
Продолжая исследовать этот эффект, Брюстер обнаружил, что он в большей степени выражен у взрослых, чем у детей. Он нашел, что зрительное восприятие глубины может изменяться даже в том случае, когда истинная глубина предмета была сначала воспринята на ощупь. Эти наблюдения должны быть отнесены к числу самых ранних психологических экспериментов. Теперь мы знаем, что тот же эффект наблюдается и у цыплят и что по крайней мере у них он является врожденным.
Этот эффект может возникнуть также при рассматривании Луны в телескоп. Он может представлять даже известную опасность в космических полетах, когда потребуется оценить лунный ландшафт при посадке на Луну (рис. 10, 17).
Рис. 10, 17. (Верхний). Модель Луны с горами и кратерами, на глубину которых указывают их тени. (Нижний). Та же самая модель Луны, но сделанная иначе. Теперь то, что было горой, выглядит как углубление; направление теней указывает на другую глубину.
Хотя тени соединяются с объектами и являются как бы их частью, в обычных условиях они четко выделяются и только изредка смешиваются с объектами. Тени играют столь важную роль в восприятии, что они могут создавать впечатление объектов даже в тех случаях, когда самих объектов в действительности нет. Это ясно видно та примере шрифта, изображенного на рис. 10, 18. Здесь мы видим настоящие большие буквы, хотя на самом деле это только тени воображаемых букв. Может быть, этот эффект и заставляет некоторых людей иногда видеть привидения?
Рис. 10, 18. Буквы? Здесь только тени, но мы видим буквы, которые как бы отбрасывают тени. Посмотрите внимательнее: ведь здесь нет выпуклых букв, отбрасывающих тень, хотя мы «видим» их. Иногда мозг придумывает объекты, пытаясь понять, что именно находится перед глазами.
11. Нужно ли нам учиться видеть?
Как мы познаем мир? Это самый древний вопрос философии, в зависимости от решения этого вопроса философов относили либо к метафизикам, которые считали, что мы рождаемся с некоторыми знаниями о мире, либо к эмпирикам; последние утверждали, что все знания возникают на основе сенсорного опыта. С точки зрения метафизики можно делать мировые открытия — даже такие, как определение числа планет, — не имея дела с реальностью и не глядя на нее, а просто сидя в кресле и сосредоточив свои мысли в нужном направлении. С точки зрения эмпирика это утверждение абсурдно: для того, чтобы знать, мы должны наблюдать.
На протяжении 2000 лет метафизики защищали свои позиции, ссылаясь на математику, особенно на геометрию, где новые факты постоянно обнаруживаются не с помощью эксперимента или наблюдений, а путем размышлений и оперирования символами. Только за последнее столетие стало ясно, что математические открытия — это открытия особого рода: они не содержат конкретные знания об объектах, а представляют собой возможные системы символов. Математические открытия имеют отношение только к математике, а не к внешнему миру[1]. Мы знаем, что существует не одна, а несколько возможных геометрий: могут быть изобретены и другие геометрии; возникает эмпирический вопрос, какая из них в большей степени соответствует нашему восприятию мира. Математика полезна при уточнении всех звеньев аргументации, в выяснении логических этапов, стоящих между формулированием проблемы и выводом, — который может быть сделан лишь при наличии соответствующего метода, — и в представлении данных в удобной форме. Но математика не дает новых знаний о мире в том смысле, в каком они открываются путем наблюдения.
1
Эта точка зрения оспаривается многими математиками. — Прим. ред.