Основные направления развития необитаемых аппаратов, которые представляют наиболее серьезную угрозу нашим национальным интересам, включают создание и совершенствование противолодочных и противоминных систем.

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века i_012.jpg

Рис. 12. Применение НПА и ННА для освещения оперативной обстановки.

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века i_013.jpg

Рис. 13. Применение НПА в целях противолодочной обороны.

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века i_014.jpg

Рис. 14. Применение НПА для поиска и уничтожения мин.

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века i_015.jpg

Рис. 15. Применение НПА при развертывании подводной связи.

Рассмотрим обозначенные направления более подробно и приведем несколько характерных примеров НПА и ННА, создаваемых для решения обозначенных задач.

1.1. Противолодочные необитаемые морские системы

Как справедливо отмечается в ряде зарубежных публикаций, с учетом современного развития разведывательных спутниковых и авиационных систем, позволяющих получать подробнейшие снимки земной поверхности, подводный флот в случае начала боевых действий может оказаться единственным средством, способным осуществить ответный удар. Таким образом, само по себе это обстоятельство, совместно с фактом наличия в составе ВМС страны подводных сил является серьезным сдерживающим фактором при возможном планировании против нее агрессии.

Однако, развитие необитаемых морских систем, которые позволят осуществлять оперативный поиск подводных лодок противника, их сопровождение и выведение их из строя (путем уничтожения или повреждения их жизненно важных узлов, например гребных винтов) существенно изменяет существующий баланс сил и ставит под сомнение возможность обеспечения ответных действий подводными лодками.

В качестве подобной системы, предназначенной для обеспечения противолодочных действий, можно привести разрабатываемую компанией «Electric boat» концепцию развертывания на базе подводных лодок типа «Огайо» сетевой системы устойчивого прибрежного подводного наблюдения (англ. Persistent littoral undersea surveillance system, networked, сокращенно — PLUSNet). Общий состав такой системы приведен на рис. 16, а конфигурация отдельных модулей — на рис. 17 и 18. Как можно видеть, в состав системы входит большое количество НПА разных типов, в том числе НПА-глайдеры (планеры), практически бесшумно перемещающиеся в воде за счет планирования, достигаемого изменением их плавучести.

Полуавтономная контролируемая сеть донных и подвижных датчиков PLUSNet должна обеспечивать на тактическом уровне и уровне окружающей среды повышение качества обнаружения, классификации, локализации и сопровождения малошумных дизель-электрических ПЛ в мелководных районах западной части Тихого океана [15].

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века i_016.png

Рис. 16. Общая структура системы PLUSNet.

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века i_017.png

Рис. 17. Применение ракетных шахт для размещения НПА Bluefin 21 и Sea Glider: 1 — пуск / прием НПА Bluefin 21; 2 — пуск / прием НПА Sea Glider.

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века i_018.png

Рис. 18. Применение ракетных шахт для размещения НПА Sea Horse и Xray: 1 — пуск / прием НПА Sea Horse; 2 — пуск / прием НПА Xray.

При этом одной из основных задач системы PLUSNet разработчиками заявляется «подготовка места боестолкновения», в том числе оперативное получение информации об особенностях распространения акустических сигналов в целях более точного обнаружения лодок противоборствующей стороны. Небезынтересно отметить, что в «западной части Тихого океана» расположены три основных страны, не являющиеся военными союзниками США, и имеющие в составе ВМС дизель-электрические ПЛ — Россия, Китай и КНДР.

Еще одна характерная иллюстрация разработки необитаемых аппаратов в целях борьбы с подводными лодками приведена в документе Министерства Обороны США, определяющем развитие необитаемых аппаратов до 2036 года (FY 2011–2036 Unmanned Systems Integrated Roadmap) [16]. В начале документа рассматриваются разные варианты применения необитаемых аппаратов в будущем. Процитируем один из вариантов развития событий с точки зрения американских военных:

«…Место событий: северная часть Тихого океана, прибрежный район.

Сложившаяся ситуация: количество и смелость скоординированных, провокационных усилий (в оригинальном тексте не обозначено, по отношению к кому действия являются провокационными, однако, логично предположить, что в американском документе подразумевается их провокационность по отношению к США) властей Республики Оранджландия (в оригинале — Orangelandia) и властей радикальной исламской нации-государства, расположенной в тропических зонах (± 20° широты), увеличились за последние 15 лет. Оранджландия имеет технологии создания и запуска ядерных межконтинентальных баллистических ракет, и несколько радикальных исламских стран также открыто обладают ядерным оружием. Несмотря на то, что роль ядерной энергетики возрастает, нефть остается главным энергетическим ресурсом, хотя получение доступа к нефти западными странами становится все более ограниченным и дорогим.

Сценарий событий: из гавани Молан Республики Оранджландия ночью, незаметно для Западных космических спутников, выходит 50-летняя бывшая советская атомная ПЛ проекта 971 (по западной классификации — класса Акула). Перемещения АПЛ ВМФ Оранджландии всегда тщательно отслеживаются из-за их редкости (меньше десяти выходов в год) и в, первую очередь, из-за статуса Оранджландии как страны-изгоя, имеющей ядерное оружие.

Выход подводной лодки из гавани определяется благодаря работе подводной сети наблюдения, которое отслеживает все перемещения судов в территориальных водах Республики Оранджландия.

Впереди по курсу движения подводной лодки находится ближайший необитаемый подводный аппарат — глайдер, который автономно отделяется от локальной сети необитаемых аппаратов с целью быстрого перехвата подводной лодки. Приблизившись на расстояние около 50 метров к проходящей мимо АПЛ, аппарату удается обеспечить прикрепление буксировочного троса к корпусу лодки, после чего он начинает буксироваться за ней (рис. 19).

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века i_019.jpg

Рис. 19. Иллюстрация из документа [16].

При этом, при погружении лодки на глубину, превышающую максимальную рабочую глубину аппарата, он разматывает трос, оставаясь на приемлемой для него позиции близко к водной поверхности. Каждые три часа он всплывает на поверхность и передает краткий отчет о своем местоположении, расходуя при этом малое количество энергии.

Эти отчеты принимаются орбитальным БЛА связи EQ-25, работающим на высоте около 23 000 метров в восточной части Тихого океана. EQ-25 является крайне выносливой воздушной системой, способной работать в течение двух месяцев без подзарядки…».

Не надо обладать закрытыми от простого гражданина знаниями, чтобы понять, какая страна подразумевается американскими специалистами под «Оранджландией».

Для полноты картины развития противолодочных необитаемых аппаратов приведем еще несколько примеров разрабатываемых систем.

Концепция создания необитаемых подводных аппаратов, базирующихся на атомных подводных лодках, начала разрабатываться в научно-исследовательском центре подводной войны ВМС США (англ. Naval Underwater Warfare Center — NUWS) еще с 1996 года [17].


Перейти на страницу:
Изменить размер шрифта: