Моя мать немедленно ответила: «Да, в самом деле. Айзек Азимов — мой сын».
Учитель воскликнул: «О! Тогда неудивительно, почему вы так хорошо пишете!»
На это моя мать, вспомнив поговорку: яблоко от яблони недалеко падает, выпрямилась во все свои сорок футов и холодно произнесла: «Прошу прощения, сэр. Неудивительно, почему он — хороший писатель».
Напомнив себе об этом, дабы призвать свою скромность, я перейду к своему предмету, который начнется с той точки, на которой окончилась предыдущая глава.
В середине XIX столетия было обнаружено примерно тридцать элементов, и это начало внушать химикам тревогу. Каждое десятилетие число элементов возрастало: три было открыто в 1770-х годах, пять — в 1780-х, пять — в 1790-х, четырнадцать — в 1800-х, четыре — в 1810-х, пять — в 1820-х и так далее.
Возникала мысль: когда же это кончится? Ученые ценят простоту, а то, что казалось им простым, становилось все сложнее и сложнее. Требовался какой-то новый порядок, в котором бы все снова стало простым. Для этого необходимо было найти некую закономерность в запутанном списке элементов, так чтобы можно было разбить элементы на отдельные «семейства». Это могло бы как-то «расчистить джунгли».
В самом деле, если бы элементы были правильно организованы, стало бы ясно, сколько элементов существует всего и сколько, таким образом, элементов осталось неоткрытыми. В середине XIX столетия, однако, это казалось невыполнимой задачей.
В то время было известно, что атомы разных элементов имеют свои атомные веса. Так, если вес атома водорода (самого легкого из известных, как тогда, так и сейчас) равен 1, атом углерода, который массивнее в 12 раз, соответственно, должен иметь атомный вес 12, атом кислорода — 16 и так далее.
Тогда для начала можно попытаться организовать элементы в порядке атомных весов, чтобы определить, будут ли у них схожими какие-нибудь семейства. Оказалось, что прямоугольная таблица может быть создана таким образом, чтобы схожие элементы распределялись столбцами или колонками (в зависимости от того, вертикально или горизонтально размещаются элементы). К сожалению, на самых первых таблицах объединялись друг с другом очень несхожие элементы, а в науке половинное решение — это не решение вообще.
Ясно, что главная проблема с организацией по атомным весам заключалась в том, что нельзя было определить, когда список завершится. Оказалось, что атомная масса углерода равна 12, азота — 14, а кислорода — 16. Как можно быть уверенным, что между ними не существует неоткрытых элементов с атомными массами 13 и 15? Кому нужна таблица, в которой зияют пустоты?
Конечно, можно возразить, что разница в 2 атомные массы очень мала, и вряд ли здесь есть промежуточный элемент, но уверенным в этом быть нельзя. Никель имеет атомную массу 58,7, а кобальт — 58,9. С такой разницей в атомной массе между углеродом и азотом могло бы уместиться девять элементов и еще девять между азотом и кислородом.
Это говорит о том, что полагаться только на атомные массы нельзя. Требуются еще какие-либо свойства, и лучше всего, если эти свойства будут представлены целыми числами, чтобы, переходя, скажем, от 1 к 2 и от 2 к 3, мы знали, что между ними ничего нет.
Первые результаты такого подхода появились в 1852 году. Английский химик Эдуард Франкланд заметил, что в химических формулах, которые были созданы к этому времени, один атом одного элемента, похоже, всегда связан с фиксированным числом атомов других элементов.
Таким образом, атом водорода никогда не связан более чем с определенным числом атомов другого вещества. Это можно назвать степенью комбинирования единицы (или валентностью, от латинского слова, обозначающего «степень»). Атом кислорода может комбинироваться с двумя атомами водорода, атом азота с тремя атомами, а атом углерода — с четырьмя, так что кислород, азот и углерод имеют валентности в 2, 3 и 4 соответственно. Эти валентности работают очень четко. Таким образом, атом углерода (валентность 4) может комбинироваться с двумя атомами кислорода (2 + 2) или с одним атомом кислорода и двумя атомами водорода (2 + 1 + 1).
Концепция валентности не только отличается простотой, ясностью и явной полезностью, но и вводит целые числа, поскольку валентностей 1,5 или 2,32 — или какой-либо в этом духе — не существует. (В действительности наука XX века дала новую концепцию, которая в самом деле ввела что-то вроде дробных валентностей, но это не влияет на систему доказательств в данной главе. — Примеч. авт.)
В 1869 году русский химик Дмитрий Иванович Менделеев попытался организовать элементы согласно молекулярной массе и валентности. Результатом стала система, очень упрощенную и неполную версию которой я привожу в таблице 1 с атомными весами, округленными до одной десятой после запятой.
В таблице 1 я даю химические элементы так, чтобы сэкономить место; это не повлияет на систему доказательств и ни в коей мере не запутает, даже если вы не знаете, каким символом какой элемент обозначен. Когда мне придется упомянуть определенный элемент, я дам его полное название, вместе с символом.
Строки в таблице 1 содержат тесно связанные семейства элементов. К примеру, верхняя строка содержит литий (Li), натрий (Na), калий (К), рубидий (Rb), цезий (Cs) и франций (Fr), которые имеют одинаковые свойства. Эти элементы медленно плавятся, исключительно активны и при определенных условиях реагируют примерно одинаково. Более того, там, где различия существуют, они проявляют себя постоянным изменением вдоль строки. От лития к натрию, калию и так далее точка плавления вещества становится ниже, а активность его возрастает. Эти шесть элементов называют щелочными металлами.
Вторая строка содержит шесть щелочноземельных элементов, которые тоже имеют сходные свойства. И так далее на протяжении таблицы.
Заметим, что в периоде 5 теллур (Те) идет перед йодом (I), хотя теллур имеет большую атомную массу, а значит, должен находиться после йода, если бы классификация шла только по атомной массе.
Именно Менделееву принадлежит великая заслуга в том, что валентность (как и химические свойства в целом) стала учитываться в первую очередь по отношению к атомной массе. Для того чтобы поместить теллур и йод в надлежащее семейство с надлежащей валентностью, пришлось поменять порядок следования атомной массы. Более сложное знание атомной структуры, обретенное химиками в дальнейшем, доказало, что в этом отношении интуиция Менделеева оказалась абсолютно правильной.
Когда мы перемещаемся вниз по списку элементов согласно их молекулярной массе, периодически повторяется определенный набор свойств — по этой причине этот список, организованный так, что определенные наборы укладываются точно в строки или колонки, называются периодической таблицей.
В то время, когда Менделеев впервые выдвинул свою Периодическую систему, значительное число элементов, приведенных в таблице 1, еще не было открыто. Они указаны в таблице 1 звездочкой.
К примеру, шесть элементов в строке внизу — гелий (He), неон (Ne), аргон (Ar), криптон (Kr), ксенон (Xe) и радон (Rn) — не были известны в 1869 году. Об их существовании совершенно не представляли, и без них Периодическая система, казалось, имела законченный вид. Если идти последовательно сверху вниз в порядке атомных весов элементов, то изменение валентности в таблице 1 происходит (если исключить нижний ряд) по следующему порядку: 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2 и так далее.
Однако, когда были открыты элементы в нижней строке, оказалось, что они не вступают в соединения с любыми другими элементами и, следовательно, имеют нулевую валентность. Таким образом, последовательность валентностей изменилась на следующую: 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2 и так далее.
Элементы нижней строки, имеющие схожие свойства и называемые инертными газами, или благородными газами, просто расширили таблицу, но не нарушили ее порядок. Наоборот, введение 0 в надлежащем месте сделало таблицу даже «элегантнее». Тот факт, что эта весьма неожиданно обнаруженная группа элементов столь превосходно вписалась в Периодическую систему, послужил дополнительным доказательством концепции Менделеева.