Для того чтобы сохранить аргон (Ar) на своем правильном месте в семействе инертных газов, его следует поставить перед калием (K), даже хотя это меняет порядок следования по молекулярным массам. И снова это повторилось в таблице с теллуром (Te) и йодом (I).
Заметим также, что в таблице 1 пять элементов с самыми большими атомными массами были неизвестны во времена Менделеева. Это полоний (Po), астат (At), радон (Rn), франций (Fr) и радий (Ra). Эти элементы были обнаружены в 1890-х и в последующие годы; они являются радиоактивными. Все эти элементы относятся к нестабильным и присутствуют в земной коре в очень малых количествах. Поскольку все они располагаются в конце таблицы, их отсутствие не влияло на все остальные.
Затем возник фтор (F), который, строго говоря, не был хорошо изучен во времена Менделеева. Это очень своеобразный элемент. Фтор был обнаружен в различных соединениях, из которых его извлечь не удавалось. Свойства фтора были известны, но на основании свойств его соединений. Его связи в соединениях оказались столь тесны, что только в 1886 году химики смогли выделить фтор из соединений, чтобы исследовать этот элемент в чистом виде. Даже малоизученный, фтор присутствовал в таблице с самого начала (это напоминает ситуацию с глобусом, северные и южные поля которого были обозначены, даже несмотря на то, что полюсов достигнуть пока не удалось).
Было еще два элемента таблицы, галлий (Ga) и германий (Ge), с особой судьбой. После их обнаружения не пришлось искать, поместить ли их в последний ряд или последнюю строку, чтобы они не нарушали общий порядок. Хотя об их существовании не подозревалось, для них оставили «вакантное место» в середине таблицы.
Если бы это место не было оставлено и будущие галлий и германий были бы проигнорированы, то при попытке перечислить элементы в порядке атомных масс пришлось бы поместить мышьяк (As) справа от алюминия (Al) и селена (Se) и справа от кремния (Si) и т. д. Это бы совершенно разрушило организацию по семействам и валентности.
Менделеев отказался от этого, и это было одним из величайших его достижений. Он поместил мышьяк (As) справа от фосфора (P), а селен (Se) справа от серы (S), где их места соответствовали их свойствам. Поскольку это оставило два свободных места справа от алюминия (Al) и кремния (Si), Менделеев решил, что они предназначены для двух элементов, которые еще только предстояло открыть. Он назвал их эка-алюминий и эка-кремний, «эка» — санскритское слово, обозначающее единицу. Другими словами, отсутствующие элементы находились на одно место справа от алюминия и кремния соответственно.
Более того, Менделеев предсказал свойства отсутствовавших элементов с большой точностью — он счел, что галлий (Ga) будет иметь свойства, промежуточные между алюминием (Al) и индием (In), а германий (Ge) — промежуточные между кремнием (Si) и цинком (Sn).
Поначалу большинство химиков мира снисходительно улыбались на «этого сумасшедшего русского», но в 1875 году был открыт галлий, а в 1886 году германий, и предсказания Менделеева сбылись во всех отношениях. Химики перестали смеяться.
Значит ли это, что описываемая нами система совершенна?
Увы, нет. Версия Периодической системы, что приведена в таблице 1, содержит лишь сорок четыре элемента, а их намного больше. Такие хорошо известные элементы, как золото, серебро, медь, железо, платина, марганец и вольфрам (все прекрасно изученные во времена Менделеева), не имели своего места в Периодической системе — в той форме, в которой она представлена в таблице 1.
Следует ли после этого отбросить систему, или же можно найти место для дополнительных элементов?
Обратите внимание, что три ячейки таблицы я пометил знаком #. Между кальцием (Ca) и галлием (Ga) разница в атомных массах составляет 29,7; между стронцием (Sr) и индием (In) 27,2; а между барием (Ba) и таллием (Tl) целых 67,1. Эти разницы немного больше, чем где-либо в Периодической системе. Если не обращать внимания на эти три интервала, то средняя разница в атомных массах от элемента к элементу во всей остальной таблице составит только 2,5.
Если мы примем 2,5 за среднюю атомную массу между соседними элементами таблицы, то останется пространство для двенадцати элементов между кальцием (Ca) и галлием (Ga), для одиннадцати элементов между стронцием (Sr) и индием (In) и для не менее чем двадцати семи между барием (Ba) и таллием (Tl).
Возможно ли это?
Да, возможно, если мы решим, что периоды в Периодической системе могут иметь не одинаковую длину (как считали некоторые поначалу), а увеличиваться по направлению к концу таблицы.
К примеру, во времена Менделеева в первом периоде имелся только один элемент, водород (H), тогда как во втором и третьем периодах было по семь элементов. Через одно поколение, когда были открыты инертные газы, оказалось, что в первом периоде находятся уже два элемента, а во втором и третьем периодах по восемь (с тех пор здесь изменений не было). Тогда почему в следующих периодах нельзя увеличить число элементов до двадцати, тридцати и даже больше?
В самом деле, во времена Менделеева было известно не менее девяти элементов с атомными массами, которые были между атомными массами кальция (Ca) и галлия (Ga); эти элементы словно заполняли большой зазор между этими массами. Аналогично девять элементов заполняли зазор между стронцием (Sr) и индием (In).
Проблема состоит в том, что валентность уже в отличие от положения с таблицей 1 не является первостепенным и определяющим фактором в этом зазоре. Элементы этого зазора расположены между элементом с валентностью 2 и элементом с валентностью 3 — от кальция (Ca) до галлия (Ga) в первом случае и от стронция (Sr) до индия (In) во втором, и, поскольку они осуществляют что-то вроде перехода от 2 до 3, их можно назвать транзитными элементами. В этой главе я буду называть элементы в таблице 1 валентными элементами.
Размещая в таблице транзитные элементы, мы можем частично руководствоваться атомными весами, частично — менее четко обозначенными валентными свойствами и частично другими химическими свойствами. Делая это, мы можем взять восемнадцать известных элементов первых двух промежутков (которые были известны к 1869 году) и выстроить их так, как показано в таблице 2.
К такому расположению трудно придраться. К примеру, ясно, что серебро (Ag) должно быть справа от меди (Cu) и что кадмий (Cd) должен быть справа от цинка (Zn), если исходить в первую очередь из основных химических свойств. Аналогично и с другими элементами. Только в указанном порядке свойства элементов соответствуют свойствам своих соседей, и у них даже атомные массы расположены по порядку, за исключением кобальта (Со) и никеля (Ni), у которых для того, чтобы сохранить последовательность химических свойств, атомные массы необходимо поменять местами. Но и в этом случае атомные массы находятся столь близко друг к другу, что подобная перестановка особенно картины не нарушает (это третий — и последний — случай перестановки в Периодической системе элементов по их атомным массам).
Таблица 2
Но в нашей таблице 2, в которой представлены четвертый и пятый периоды, есть два незанятых места. Одно из них оставлено слева от иттрия (Y), а другое — справа от марганца (Mn). Менделеев предсказал, что слева от иттрия (Y) должен располагаться новый элемент (уже третий из предсказанных им). Он назвал этот элемент эка-бор, поскольку в первой версии таблицы он оставил пустое место справа от бора (В). Менделеев указал и свойства будущего элемента.
Эта ячейка была заполнена в 1879 году, когда был обнаружен скандий (см. главу 11). Его символ Sc; его атомная масса очень удачно вписалась между кальцием (Ca) и титаном (Ti).
Ячейку справа от марганца (Mn) оказалось заполнить не столь легко. Элемент, который подошел сюда, был обнаружен только в 1937 году. Его назвали технецием (Tc, атомная масса 99). В результате промежуток в атомных массах транзитных элементов казался практически заполненным (если брать в расчет по десять элементов подряд в четвертом и пятом периодах, считая и пустые ячейки). Атомные массы в среднем разнились на 2,6, в то время как в среднем разница для валентных элементов составляла 2,5.