Кроме того, организм всегда запасает немного железа на будущее в виде белковых молекул — ферритина, которые находятся в печени, селезенке и костном мозге. Молекула ферритина по массе почти на четверть состоит из железа.
Общее количество железа в организме, включая гемоглобин, миоглобин и ферритин, составляет около 7 граммов. Это немного, но почти в девять раз больше, чем потребовалось бы организму, если бы его размер и строение исключали необходимость в системе кровообращения.
Хотя требуемое клеткам человека количество железа в девять раз превосходит количество, необходимое простому морскому организму, у нас не развит механизм усвоения железа. Возможно ли это? Если да, то это напоминает картину, когда город разрастается, становясь в девять раз больше своего первоначального размера, а транспортная система остается прежней. Неудивительно, что над нами постоянно висит угроза железодефицитной анемии.
На эту ситуацию организм реагирует сохранением запасов железа.
Опасность естественной потери железа возникает тогда, когда погибает красная клетка. Красные клетки не вечны. Постепенно они стареют, распадаются и погибают. Когда это происходит, молекулы гемоглобина в составе красных клеток также погибают. На 95 % молекула гемоглобина состоит из белка, не содержащего железа. Он носит название глобина. Глобин расщепляется на мелкие группы атомов, которые могут использоваться для создания других протеинов или иных целей. Участь глобина не так уж важна, поскольку при необходимости он может вырабатываться в организме в достаточном количестве.
Оставшиеся 5 % молекулы гемоглобина представляют собой железосодержащий гем. Кроме атома железа, гем состоит из сложной конструкции атомов, которая называется порфириновым кольцом. Организм избавляется от гема, разрывая порфириновое кольцо, и освобождая атом железа. Разорванное кольцо лишенное железа, является одним из желчных пигментов. (Пигментом оно называется потому, что эти соединения обычно окрашены. Само порфириновое кольцо и молекулы, в которые оно входит как составная часть, окрашены в пурпурный цвет. Слово «порфирин» происходит от греческого «пурпурный».)
Цвет желчных пигментов варьируется от красного до зеленого. После образования они выделяются из крови печенью, которая отправляет их в кишечник в составе секрета — желчи. Эти молекулы разорванного порфирина первоначально были обнаружены в желчи, поэтому их и называют желчными пигментами. Они проходят по кишечнику и выделяются из организма. Своим цветом человеческие экскременты обязаны желчному пигменту. Для организма не представляет трудности накапливать порфирин, в отличие от глобина, поэтому он создает дополнительные запасы порфирина.
Иногда случается, что проток, ведущий от печени к кишечнику, через который должна проходить желчь, заблокирован камнем. В этом случае пигмент накапливается сначала в печени, а потом переходит в кровь. Зеленоватый цвет пигмента просвечивает через кожу. Это состояние известно как желтуха. У нее могут быть и другие причины, например некоторые заболевания печени и нарушения, в результате которых происходит слишком быстрое расщепление красных клеток.
У молекулы гемоглобина есть и третья часть — сами атомы железа. Они не покидают организм и используются для создания новых молекул гемоглобина.
Некоторые ученые предполагают, что эффективность, с которой происходит отложение атомов железа в организме, может иметь свои недостатки, а плохое усвоение железа — не показатель плохой работы организма, а необходимое средство, препятствующее слишком сильному накоплению этого элемента. Существуют люди, которые по неизвестным пока причинам усваивают ненормально большое количество железа. С годами в организме таких людей может накапливаться до пятидесяти граммов избыточного железа (в семь раз больше нормы) в виде ферритина или другого железосодержащего белка — гемосидерина.
Это состояние, противоположное железодефицитной анемии, называется гемохроматозом. Лечение заключается в том, что каждую неделю или две у пациента выпускают кровь, чтобы снизить уровень содержания железа. Это один из случаев, при котором старинный метод кровопускания приносит пользу.
Интересно знать, почему у летучей мыши — вампира, питающегося исключительно кровью и получающего большое количество железа, содержание железа в организме не превышает нормальных значений. Может, она плохо усваивает железо или способна избавляться от него? Мне ни разу не попадалась информация по этому вопросу.
Сколько раз атомы железа должны оторваться от одной молекулы гемоглобина и присоединиться к другой, зависит от срока жизни красной клетки. Оказалось, что продолжительность ее жизни не так-то легко определить. Под микроскопом все красные клетки выглядят одинаково: среди них нет молодых и дряхлых. И все-таки они не вечны. В крови часто находят маленькие фрагменты погибших клеток (гемокония или кровяная пыль). Они переносятся в селезенку и там уничтожаются крупными клетками макрофагами. Что известно о жизни красных клеток?
Существуют две версии. Либо жизнь красной клетки зависит от случая, так что некоторые из них живут всего несколько минут, другие — недели, а третьи — годы, в зависимости от того, как часто красная клетка контактировала со стенками кровеносных сосудов и была травмирована, либо у нее есть определенная продолжительность жизни, независимо от условий существования.
Ответ был найден при помощи изотопов, и это только один пример того, как тысячи научных проблем были разрешены за последнее время посредством этой новейшей технологии.
Большинство атомов существуют в нескольких разновидностях, которые называются изотопами. Например, атомы азота существуют в двух разновидностях — азот14 и азот15. Из них чаще встречается азот14. Из всех атомов азота он составляет 99,64 %, а азота15 всего 0,36 %. Молекула гемоглобина состоит из 750 атомов азота, из которых всего два атома (в среднем) представлены азотом15, а остальные — азотом14.
Ученые сумели выделять изотопы и создать азотсодержащие вещества с необыкновенно высоким содержанием азота15. Одним из таких веществ является глицин, который при добавлении в пищу усваивается организмом и включается во все белки, в том числе и в гемоглобин. Он может как включиться целиком в глобин, так и в виде фрагментов, содержащих атомы азота, в гемовую часть молекулы гемоглобина.
Ученый-экспериментатор может выяснить, включился ли глицин в гемоглобин. Для этого требуется выделить некоторое количество гемоглобина от крови (легко проделать), отделить атомы азота от молекул гемоглобина (тоже просто) и определить в них процентное содержание азота15. Последняя процедура уже не столь проста, она требует наличия сложного инструмента — масс-спектрометра, который измеряет массу отдельных атомов и может отличить более тяжелый атом азота15 от более легкого азота14. Если окажется, что молекула гемоглобина необыкновенно богата азотом15, самым простым объяснением этого явления будет то, что содержавшийся в пище глицин по крайней мере включился в гемоглобин.
Из-за того что это необычный изотоп, мы можем проследить за его переходом из одного вещества в другое, мы в состоянии определить его местонахождение и степень включения в те или иные вещества во время их химических превращений в живых тканях. Такие изотопы можно сравнить с ярким ярлычком, который позволяет нам легко отличить свою сумку или чемодан среди чужих вещей в багажном отделении, когда мы путешествуем по железной дороге. По этой причине вещества, содержащие различные изотопы, называются мечеными.
Теперь давайте выясним, как меченый глицин помогает определить срок жизни красной клетки. Допустим, в течение двух дней человек получает его с обычной пищей. У испытуемого через определенные промежутки берут анализ крови и проверяют гемоглобин на содержание азота15. Экскременты также анализируют на содержание этого изотопа. В течение недель в гемоглобине повышается содержание азота15, так как глицин медленно включается в молекулы гемоглобина. Причина такой медлительности кроется в том, что значительная часть глицина сначала попадает в другие белки и только после этого в гемоглобин.