Через три года после сетований Лоренца теория относительности навсегда похоронила идею эфира. В этом могущество истинной теории — она уж если хоронит ложную идею, то навсегда. Никакими опытными ухищрениями с нею ничего не поделаешь. Так закон сохранения энергии сделал заведомо бессмысленными все попытки построить вечный двигатель, и патентные бюро всего мира давно уже отвергают, не рассматривая, любые проекты перпетуум-мобиле.
Теория относительности показала, что нет и не может быть абсолютного покоя. Нет абсолютного пространства, в котором звездные миры вселенной плавали бы, как рыбы в неподвижном водоеме: рыбы снуют, а вода стоит. В таком аквариуме перемещение рыбешек можно отсчитывать от неподвижных стенок. А во вселенной нельзя найти абсолютно покоящегося «тела отсчета». Мировое пространство нельзя рассматривать, как стоячую воду или — повторим это — как дом, построенный кем-то для материи, в который она въехала на временное или постоянное жительство.
А призрак «самого удачного» эфира превращал вселенную именно в аквариум со стоячей водой. Неподвижный, всепроникающий, этот эфир Лоренца захотел играть запрещенную природой роль — он стал материальным воплощением абсолютного покоя, он сделался физическим выражением ложной идеи абсолютного пространства. Значит, по приговору теории относительности он был обречен.
Можно запоздало спросить: а как же по неподвижному эфиру вообще могли передаваться колебания, как мог по нему распространяться свет? Ну, скажем, так же, как по неподвижно висящему театральному занавесу порою пробегает дрожь от прикосновения руки. Но теперь уже не важны детали: теория относительности попросту сняла этот занавес.
Но нелегко было с ним расставаться, с этим призраком. Впрочем, вся сегодняшняя физика, и особенно наука об элементарных частицах, представляет собою цепь таких расставаний с прежними иллюзиями.
Не раз экспериментаторы пытались опровергнуть опыт Майкельсона. В 1904 году Морли и Миллер еще увеличили точность измерений, а через два десятилетия второй из них Неожиданно объявил, что новые данные все-таки доказывают существование ветра в неподвижном эфире, сквозь который летит Земля. Выводы Миллера сердито комментировал покойный академик С. И. Вавилов. И было понятно, почему он сердился: ловля эфира стала сбором улик против теории относительности — против новых революционных физических воззрений нашего века.
Экспериментаторы, верившие в будущее, а не (в прошлое науки, снова должны были взяться за доказательство уже доказанного. В начале 30-х годов физик Георг Иосс предпринял новые опыты и еще раз развеял легенду о пойманном эфирном ветре. При этом он без всякой вежливости высмеял Миллера: на свою беду, тот всерьез указал, что в стене его высокогорной лаборатории имелось стеклянное окно, дабы эфирному ветру было легче дойти до прибора! «К сожалению, — издевался Иосс, — Миллер не указал, было ли в противоположной стене другое окно, чтобы эфирный сквозняк стал сильнее».
Ученые шутят, как отпевают! Но точнее: то были уже поздние поминки после настоящего погребения эфира в 1905 году, когда появилась теория относительности. Замечательно, что в том же самом году и благодаря трудам того же Эйнштейна физика обогатилась новым понятием — фотон. Сначала только понятием, или, вернее, представлением; само слово это вошло в словарь науки двумя десятилетиями позже.
Была ли связь между гибелью эфира и рождением фотона? Ах, если бы она была прямой, эта связь! Насколько легче было бы сейчас вести рассказ. Все сразу стало бы по местам: открытые Эйнштейном частицы света немедленно заместили бы собой в картине мира прежние световые волны. Нет эфира — нет и волн. Световой луч — просто поток особых частиц, летящих через пустоту. Вот и все. Свет и вещество уравниваются в правах. Отныне в мире есть только частицы и никаких волн!
…Частицы. Это так понятно, так просто. Они, наверное, круглые, аккуратненькие, как бильярдные Шары. Ученые любят это сравнение, когда заходит речь о любого рода частицах. И неспроста: физики мечтают о наглядности своих объяснений нисколько не меньше, чем писатели о выразительности своих образов. И сама природа тоже ведь любит эту экономную и ясную форму шара: Земля и Луна. Солнце и звезды — все они шарообразны. Наверное, и в микромире тоже все шарики, шарики, шарики — мал мала меньше, как в детской разъемной игрушке… Размеры в природе совсем не важны: в мире звезд есть карлики и гиганты, а движением и тех и других все равно ведь управляют ясные и понятные законы небесной механики. Атомы тоже, говорят, подобны солнечной системе: вокруг шарообразного ядра вращаются шарики-электроны — в любой книжке так их рисуют. Как все хорошо и просто! А если еще и свет состоит из частиц, тогда совсем благодать. Снова шарики, снова микробильярд, снова испытанные, веками проверенные законы старой механики. Нет, правда, как славно все получается: единая картина строения материи устанавливается сама собой — мгновенно и необременительно! Да здравствует частица света — фотон!
…Мы размечтались, но не как древние натурфилософы; а как Маниловы — натурфилософы домашние, те, что, созерцая жучка на травинке, любят вздохнуть: «Как мудро устроено все в природе, пойти чайку попить, что ли?» Поглядывая на ночные небеса, люди такого склада любят задумчиво поговорить о простоте и гармонии в коловращении вселенной.
А в эти часы какой-нибудь бедняга физик, как уставший музыкант, разминает кисть руки: сколько бумаги изрисовано лебедиными шеями интегралов и верблюжьими горбами кривых, а непредвиденные противоречия не исчезают — старая теория и новые факты расходятся! Надо будет еще долго работать, думать, спорить, томиться непониманием, выискивать обходные пути.
«Вы сочинили и напечатали в своем умном сочинении, — как сказал мне Герасимов, — что будто бы на самом величайшем светиле, на Солнце, есть черные пятнушки. Этого не может быть, потому что этого не может быть никогда… И для чего на нем пятны, если и без них можно обойтиться?» — так писал ученому соседу чеховский домашний натурфилософ, отставной урядник Войска Донского.
Мечты о материи, построенной из шариков, очень похожи на это желание «обойтиться без черных пятнушек». Может быть, природа и устроена просто, да только заранее решительно неизвестно, что это значит. Простота почему-то любит притворяться сложной и необъяснимой. И это вечное ее притворство.
«Не обижайтесь, что я вам так мало пишу. Демон проблем безжалостно сжимает меня в своих когтях и заставляет предпринимать отчаянные усилия, чтобы преодолеть математические трудности… Думаю, что я, наконец, ухватился за краешек истины», — так писал ученому другу величайший физик современности, одно из открытий которого и навело нас на этот разговор, Альберт Эйнштейн.
Даже самые проницательные из ученых скромнее домашних мудрецов. Краешек истины, только краешек! — для них это прекрасная награда за отчаянные усилия. И они не смущаются тем, что такой краешек может выглядеть неправдоподобно странно — была бы уверенность, что это «высунулась истина».
Фотон не упростил картину мира — не превратил материю в Сахару бильярдных шариков. То, что последовало позже за его открытием, выявило в этой картине удивительные черты. Домашние натурфилософы (даже с учеными степенями!) до сих пор пожимают плечами: «Этого не может быть, потому что этого не может быть никогда». Впрочем, в физике таких урядников, кажется, уже не осталось. Они сохранились в других науках о природе. Это они противятся вторжению современной физики в биологию, как еще недавно противились вторжению кибернетики в технику, словно естествознание не едино, словно не едина материя во вселенной.
Судьбы научных идей драматичны, если знакомиться с ними не по учебникам.
Все на свете имеет свою историю. За пять лет до появления идеи фотона в научном языке появилось слово «квант». В 1900 году, как бы начиная новый век, оно впервые прозвучало на заседании Немецкого физического общества, когда берлинский профессор Макс Планк докладывал о выводе новой формулы, относящейся к тепловому излучению.