Геометрия: Планиметрия в тезисах и решениях. 9 класс i_644.png

находим координаты точки Е:

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_645.png

Следовательно, М (х1/2; у1/2).

Угловые коэффициенты прямых АЕ и СМ равны соответственно

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_646.png

Подставив значения x1 и у1 получим:

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_647.png

k1k2 = -1, что говорит о перпендикулярности прямых. Значит, отрезки АЕ и СМ перпендикулярны.

Задача 157

Решение. Имеем (PA + РВ + PC)2? 0, причем равенство достигается только тогда, когда Р – центроид треугольника ABC. Отсюда

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_648.png

Но

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_649.png
Геометрия: Планиметрия в тезисах и решениях. 9 класс i_650.png

Тогда

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_651.png
Геометрия: Планиметрия в тезисах и решениях. 9 класс i_652.png

Подставив эти значения скалярных произведений в неравенство (1), получим:

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_653.png

Задача 163 (рис. 302)

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_654.png

Рис. 302.

Решение. Пусть ЕК = КМ = MF = а. ЕК – средняя линия в ?ABC, значит, ВС = 2а. ЕМ – средняя линия в ?ABD, поэтому AD = 2ЕМ = 2 ? 2а = 4а; AD/BC = 4а/2а =2.

Ответ: 2:1.

Задача 164 (рис. 303)

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_655.png

Рис. 303.

Решение. NK и MP – средние линии в ?BCD и ?ABD, поэтому NK||BD и MP||BD; MP = 1/2 BD и NK = 1/2 BD. Значит, MP||NK и MP = NK. Аналогично MN||PK (||AC) и MN = PK = 1/2 AC. Так как трапеция равнобедренная, то АС = BD, значит MN = NK = КР = РМ. Параллелограмм MNKP – ромб.

Задача 165 (рис. 304)

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_656.png

Рис. 304.

Решение. Очевидно, что MNPQ – параллелограмм. ?BAD + ?ABC = 180°. Так как AM и ВМ – биссектрисы, то ?ВАМ + ?АВМ = 90°, значит, ?АМВ = 90° и ?NMQ = 90°. Таким образом, MNPQ – прямоугольник.

Задача 166 (рис. 305)

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_657.png

Рис. 305.

Решение. SABCD = 1/2 BD ? AC ? sin ? = S. Sпараллелограмма = ab sin ? = BD ? AC ? sin ? = 2S.

Ответ: 2S.

Задача 167 (рис. 306)

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_658.png

Рис. 306.

Решение. Обозначим точку на диагонали, о которой идет речь в условии задачи, через О. Так как ?ABC = ?ACD, то равны и высоты ВР и DM этих треугольников. ОК = ОС ? sin ?; ОТ = ОС ? sin ? (см. рис).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_659.png

что и требовалось доказать.

Задача 168 (рис. 307)

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_660.png

Рис. 307.

Решение. Пусть ABCD – данный в условии задачи четырёхугольник. Обозначим через Е, К, F, N середины сторон АВ, ВС, CD и AD соответственно. Тогда EN – средняя линия треугольника ABD, и, значит, EN||BD. Аналогично доказывается, что KF||BD, ЕК||АС и NF||АС. Это означает, что EN||KF и ЕК||NF, т. е. четырёхугольник NEKF – параллелограмм. По свойству параллелограмма ЕК = NF. EN = KF, и по условию EF = NK. Отсюда следует, что четырёхугольник NEFK – прямоугольник. Ранее доказано, что EN|| BD и ЕК||АС, поэтому BD ? AC. SABCD = 1/2 ? AC ? BD ? sin90° = 1/2 ? 2 ? 1 ? 1 = 1.

Ответ: 1 м2.

§ 3. Ответы к задачам экзаменационных комплектов

Ответы и указания к задачам экзаменационного комплекта № 1

Билет № 1

3) 74°.

4) ?1/?2 = R2/R1.

Билет № 2

3) 94 см.

4) AB + BD + DC = 14 см.

Билет № 3

3) 12? см2.

4) Воспользоваться тем, что две крайние части средней линии трапеции равны половине верхнего основания.

Билет № 4

3) 4 и 6 см.

4) Если В1К1С – точки касания (К – точка касания окружностей), О1, О2 – центры окружностей, то сначала доказываем, что ?АО1К = ?АКO2, а затем, что ?ВАО1 = ?АO2С.

Билет № 5

3) 5 см (воспользоваться подобием ?DCE и ?АСЕ).

4) Воспользоваться теоремой Фалеса.

Билет № 6

3) Воспользуйтесь свойством параллельных прямых.

4) Учесть то, что треугольник разбивается на прямоугольник и два равнобедренных треугольника (значит, сторона прямоугольника равна катету малого треугольника). Периметр равен сумме катетов.

Билет № 7

3) 12 см (?BOF ~ ?AOD).

4) Докажите, что расстояния от точки пересечения диагоналей до сторон ромба равны.

Билет № 8

3) Докажите равенство углов DBA и ACF и воспользуйтесь признаком параллельности прямых.

4) Выразите по теореме Пифагора квадрат каждой стороны четырёхугольника через соответствующие отрезки диагоналей.

Билет № 9

3) 68°, 68° и 44°.

4) 4?3 см и 6?2 см.

Билет № 10

3) 4 (т. к. 180° (n – 2) = 360°).

4) Если АС = а, то AD = a/2, АВ = 2а, DB = 3a/2.

Билет № 11

3) 56 см.

4) В равностороннем треугольнике биссектрисы и медианы совпадают; воспользуйтесь свойством точки пересечения медиан.

Билет № 12

3) 66° и 66°.

4) По 60°.

Билет № 13

3) 8, 6 и 6 см.

4) 60° (угол DOG, больший 180°, равен 2 ? 150° = 300°).

Билет № 14

3) 13 см.

4) Стороны равностороннего треугольника – по 12 см, а равнобедренного – 12, 14 и 14 см.

Билет № 15

3) Треугольники равны по двум сторонам и углу между ними.

4)

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_661.png
Билет № 16

3) Треугольники равны по двум сторонам и углу между ними.

4) 1:1:?3.

Билет № 17

3) 5 см (обозначьте АВ = ВС = a; AD = DC = в, BD = х и запишите систему уравнений).

4) 12 и 8 см (докажите равенство ?AMP и ?PNC, из которого следует, что АР = 12).

Билет № 18

3) 67°.

4) Воспользуйтесь тем, что внешний угол треугольника равен сумме двух внутренних, с ним не смежных.

Билет № 19

3) 25/2 см2.

4) 5 (т. к. сумма внешних углов равна 360°, то угол в правильном многоугольнике равен 468° – 360° = 108°. Далее: 180°(n – 2)/n = 108°; n = 5).

Билет № 20

3) Пусть АВ – общая хорда двух окружностей с центрами О1 и O2, ?О1АO2 = ?О1BO2 (по трем сторонам), значит, углы АO2О1 и O1O2B равны, а биссектриса в равнобедренном треугольнике является и высотой.

4) 16 (т. к. в трапецию вписана окружность, то сумма оснований – а она равна 8 – равна сумме боковых сторон).

Билет № 21

3) Увеличивается на 20? см.

4) Проведите диагонали в трапеции, рассмотрите средние линии полученных треугольников и учтите равенство боковых сторон трапеции.

Билет № 22

Перейти на страницу:
Изменить размер шрифта: