находим координаты точки Е:
Следовательно, М (х1/2; у1/2).
Угловые коэффициенты прямых АЕ и СМ равны соответственно
Подставив значения x1 и у1 получим:
k1k2 = -1, что говорит о перпендикулярности прямых. Значит, отрезки АЕ и СМ перпендикулярны.
Задача 157
Решение. Имеем (PA + РВ + PC)2? 0, причем равенство достигается только тогда, когда Р – центроид треугольника ABC. Отсюда
Но
Тогда
Подставив эти значения скалярных произведений в неравенство (1), получим:
Задача 163 (рис. 302)
Рис. 302.
Решение. Пусть ЕК = КМ = MF = а. ЕК – средняя линия в ?ABC, значит, ВС = 2а. ЕМ – средняя линия в ?ABD, поэтому AD = 2ЕМ = 2 ? 2а = 4а; AD/BC = 4а/2а =2.
Ответ: 2:1.
Задача 164 (рис. 303)
Рис. 303.
Решение. NK и MP – средние линии в ?BCD и ?ABD, поэтому NK||BD и MP||BD; MP = 1/2 BD и NK = 1/2 BD. Значит, MP||NK и MP = NK. Аналогично MN||PK (||AC) и MN = PK = 1/2 AC. Так как трапеция равнобедренная, то АС = BD, значит MN = NK = КР = РМ. Параллелограмм MNKP – ромб.
Задача 165 (рис. 304)
Рис. 304.
Решение. Очевидно, что MNPQ – параллелограмм. ?BAD + ?ABC = 180°. Так как AM и ВМ – биссектрисы, то ?ВАМ + ?АВМ = 90°, значит, ?АМВ = 90° и ?NMQ = 90°. Таким образом, MNPQ – прямоугольник.
Задача 166 (рис. 305)
Рис. 305.
Решение. SABCD = 1/2 BD ? AC ? sin ? = S. Sпараллелограмма = ab sin ? = BD ? AC ? sin ? = 2S.
Ответ: 2S.
Задача 167 (рис. 306)
Рис. 306.
Решение. Обозначим точку на диагонали, о которой идет речь в условии задачи, через О. Так как ?ABC = ?ACD, то равны и высоты ВР и DM этих треугольников. ОК = ОС ? sin ?; ОТ = ОС ? sin ? (см. рис).
что и требовалось доказать.
Задача 168 (рис. 307)
Рис. 307.
Решение. Пусть ABCD – данный в условии задачи четырёхугольник. Обозначим через Е, К, F, N середины сторон АВ, ВС, CD и AD соответственно. Тогда EN – средняя линия треугольника ABD, и, значит, EN||BD. Аналогично доказывается, что KF||BD, ЕК||АС и NF||АС. Это означает, что EN||KF и ЕК||NF, т. е. четырёхугольник NEKF – параллелограмм. По свойству параллелограмма ЕК = NF. EN = KF, и по условию EF = NK. Отсюда следует, что четырёхугольник NEFK – прямоугольник. Ранее доказано, что EN|| BD и ЕК||АС, поэтому BD ? AC. SABCD = 1/2 ? AC ? BD ? sin90° = 1/2 ? 2 ? 1 ? 1 = 1.
Ответ: 1 м2.
§ 3. Ответы к задачам экзаменационных комплектов
Ответы и указания к задачам экзаменационного комплекта № 1
3) 74°.
4) ?1/?2 = R2/R1.
3) 94 см.
4) AB + BD + DC = 14 см.
3) 12? см2.
4) Воспользоваться тем, что две крайние части средней линии трапеции равны половине верхнего основания.
3) 4 и 6 см.
4) Если В1К1С – точки касания (К – точка касания окружностей), О1, О2 – центры окружностей, то сначала доказываем, что ?АО1К = ?АКO2, а затем, что ?ВАО1 = ?АO2С.
3) 5 см (воспользоваться подобием ?DCE и ?АСЕ).
4) Воспользоваться теоремой Фалеса.
3) Воспользуйтесь свойством параллельных прямых.
4) Учесть то, что треугольник разбивается на прямоугольник и два равнобедренных треугольника (значит, сторона прямоугольника равна катету малого треугольника). Периметр равен сумме катетов.
3) 12 см (?BOF ~ ?AOD).
4) Докажите, что расстояния от точки пересечения диагоналей до сторон ромба равны.
3) Докажите равенство углов DBA и ACF и воспользуйтесь признаком параллельности прямых.
4) Выразите по теореме Пифагора квадрат каждой стороны четырёхугольника через соответствующие отрезки диагоналей.
3) 68°, 68° и 44°.
4) 4?3 см и 6?2 см.
3) 4 (т. к. 180° (n – 2) = 360°).
4) Если АС = а, то AD = a/2, АВ = 2а, DB = 3a/2.
3) 56 см.
4) В равностороннем треугольнике биссектрисы и медианы совпадают; воспользуйтесь свойством точки пересечения медиан.
3) 66° и 66°.
4) По 60°.
3) 8, 6 и 6 см.
4) 60° (угол DOG, больший 180°, равен 2 ? 150° = 300°).
3) 13 см.
4) Стороны равностороннего треугольника – по 12 см, а равнобедренного – 12, 14 и 14 см.
3) Треугольники равны по двум сторонам и углу между ними.
4)
3) Треугольники равны по двум сторонам и углу между ними.
4) 1:1:?3.
3) 5 см (обозначьте АВ = ВС = a; AD = DC = в, BD = х и запишите систему уравнений).
4) 12 и 8 см (докажите равенство ?AMP и ?PNC, из которого следует, что АР = 12).
3) 67°.
4) Воспользуйтесь тем, что внешний угол треугольника равен сумме двух внутренних, с ним не смежных.
3) 25/2 см2.
4) 5 (т. к. сумма внешних углов равна 360°, то угол в правильном многоугольнике равен 468° – 360° = 108°. Далее: 180°(n – 2)/n = 108°; n = 5).
3) Пусть АВ – общая хорда двух окружностей с центрами О1 и O2, ?О1АO2 = ?О1BO2 (по трем сторонам), значит, углы АO2О1 и O1O2B равны, а биссектриса в равнобедренном треугольнике является и высотой.
4) 16 (т. к. в трапецию вписана окружность, то сумма оснований – а она равна 8 – равна сумме боковых сторон).
3) Увеличивается на 20? см.
4) Проведите диагонали в трапеции, рассмотрите средние линии полученных треугольников и учтите равенство боковых сторон трапеции.