По условию
После упрощений получаем уравнение 11x – 5у = -24. Система уравнений
имеет единственное решение х = 1, y = 7.
Ответ: BC = 1, AD = 7.
Задача 135 (рис. 291)
Рис. 291.
Решение. По теореме о величине вписанного в окружность угла ?ABC = 1/2 ?АОС. Заметим, что ?АОС = ?MON, a yroл ?МОN опирается на диаметр MN окружности с центром О1. ?АОС = 90°, и значит 1/2 ?АОС = 1/2 90° = 45°.
Ответ: 45°
Задача 136 (рис. 292)
Рис. 292.
Решение. Пусть точка А делит хорду ВС на отрезки 5 и 4. Проведём через точки А и О (центр окружности) диаметр ED, причём ED = 2R = 12. Обозначим AD через х, тогда ОА = 6 – х (см. рис.). ?DCA = ?АЕВ (опираются на одну и ту же дугу BD), ?ADC подобен ?BEА (по двум углам), значит, AD/AB = AC/AE; x/5 = 4/(12 – x); 12х – х2= 20; х2 – 12х + 20 = 0; х = 10 или 2. Учитывая, что х ? R, получим x = AD = 2.
Ответ: 2.
Задача 137
Рис. 293.
Решение I (рис. 293). Обозначим точки пересечения окружности лучами р и q соответственно через С, А и Е, В. Проведём CD||ЕВ. Получим угол ?ACD = х. Угол ?ACD является вписанным в окружность и по определению равен половине дуги AD. По условию задачи дуга СЕ = ?, а дуга АВ равна ?. Тогда дуга AD = ? – ?. В таком случае х = 1/2 (? – ?).
Рис. 294.
Решение II (рис. 294). Обозначим точки пересечения окружности прямыми р и q соответственно через А, Е и D, С. Проведём EF||CD. Угол AEF будет равен х (как внутренние накрест лежащие углы при параллельных CD, FE и секушей АЕ). ?AEF является вписанным в окружность и равен половине дуги AF. Из условия задачи и построений следует, что дуга AF = ? + ?.
Следовательно,
Задача 138 (рис. 295)
Рис. 295.
Решение. Так как BD – диаметр окружности, то ?BAD = ?BCD = ?/2. Обозначим ?ABD через х, тогда из прямоугольного треугольника ABD получаем, что cos х = AB/BD. По условию BD = 2, АВ = 1, значит, cos х = 1/2, и так как х – внутренний угол прямоугольного треугольника ABD, то х = ?/3. Тогда ?DBC = 3/4 (?ABD) = 3/4 ? ?/3 = ?/4. Вписанные углы ACD и ABD опираются на одну и ту же дугу AED, значит, ?ACD = ?ABD = ?/3. Из треугольника ADC по теореме синусов получаем, что
Ответ:
Задача 141
Решение. OB = 4; ВС = 3, значит ОС = 7. OB ? ОС = ОА2; 4 ? 7 = OA2; OA = 2?7.
Ответ: 2?7.
Задача 146 (рис. 296)
Рис. 296.
Решение. Достроим ?ABD до параллелограмма. Тогда АС < АВ + ВС, но АС = 2AM, 2AM < АВ + ВС = АВ + AD, что и требовалось доказать. Заметим, что AM является медианой ?ABD.
Задача 147 (рис. 297)
Рис. 297.
Решение. Достаточно построить симметричные точки относительно берегов и длина полученной ломаной равна длине прямолинейного отрезка А'В', т. е. минимальна.
Задача 148 (рис. 298)
Рис. 298.
Решение. Так как средняя линия трапеции ABCD равна 4, то сумма оснований равна 8. Воспользуемся тем, что середины оснований и точка пересечения боковых сторон трапеции лежат на одной прямой КМ. Из ?AKD ?AKD = 90°. Заметим, что ?AKD – прямоугольный, причем AD – гипотенуза и точкой М делится пополам. Но тогда AM = MD = КМ = 4 – х (радиусы описанной около ?AKD окружности), КЕ = 3 – х, где х – это длина отрезков BE и ЕС. Из подобия ?АКМ и ?ВКЕ следует: (4 – х)/x = (4 – х)/(3 – x); x = 3/2; BC = 3, AD = 5.
Ответ: 5 и 3.
Задача 154 (рис. 299)
Рис. 299.
Решение. Пусть D – проекция точки F на прямую d. Середину О отрезка DF примем за начало прямоугольной системы координат, а прямую OF – за ось ординат. Точке F отнесём координаты (0; 1). Прямая d будет иметь уравнение у = -1. Пусть М(х; y) – произвольная точка плоскости. Тогда
и MN = |у + 1 |, где MN – расстояние от точки М до прямой d. Если
Возведя обе части в квадрат, получим уравнение у = 1/4x2.
Обратно, если координаты точки М удовлетворяют этому уравнению, то х2= 4у и, следовательно,
Заметим, что если вместо DF = 2 положить DF = р, то получим уравнение х2= 2ру.
Из школьного курса алгебры известно, что линия, определяемая уравнением у = ах2, называется параболой.
Задача 155 (рис. 300)
Рис. 300.
Решение. Переведём условие задачи на векторный язык. Поскольку точки Р, A, D так же, как и точки Р, В, С, лежат на одной прямой, то PD = аРА, PC = bРВ, где а и b – коэффициенты пропорциональности, а > 0; b > 0. Точки М и N – середины отрезков АВ и CD. Следовательно,
Учитывая приведённые выше равенства, получаем: PN = 1/2(аРА + bРВ). Согласно условию задачи, векторы РМ и PN коллинеарны. Следовательно, найдётся такое число ?, что
откуда (а – ?)РА + (b – ?)РВ = 0. На основании единственности разложения вектора по неколлинеарным векторам РА и РВ заключаем, что а = b = ?. Таким образом, PD = аРА и PC = аРВ. Вычитая из первого равенства второе, получаем CD = аВА. Значит, стороны CD и АВ параллельны, т. е. ABCD – трапеция.
Задача 156 (рис. 301)
Рис. 301.
Решение. Высота равнобедренного треугольника является его осью симметрии. Поэтому середину D основания АВ треугольника ABC удобно принять за начало прямоугольной системы координат, а направленные прямые АВ и DC – за оси координат. Тогда вершинам треугольника можно отнести координаты: А(-1; 0), B(1; 0), С(0; с).
Вычислим угловые коэффициенты прямых АЕ и СМ. Для этого сначала найдём координаты точек Е и М. Запишем уравнение прямой ВС: х + у/с = 1 или у = – сх + с.
Так как DE ? ВС, то угловой коэффициент прямой DE равен 1/с, а её уравнение есть у = (1/c)x. Решая систему уравнений