Рис. 81.

с2= а2+ b2.

4. Пропорциональность и подобие на плоскости

Теорема Фалеса.

Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне (рис. 82).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_084.png

Рис. 82.

(АВ = BC, AA1||BB1||CC1) ? A1B1 = В1С1, q и р – лучи, образующие угол ?.

а, b, с – прямые, пересекающие стороны угла.

Теорема о пропорциональных отрезках (обобщение теоремы Фалеса).

Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки (рис. 83).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_085.png

Рис. 83.

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_086.png

или

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_087.png

Свойство биссектрисы треугольника.

Биссектриса угла треугольника делит противолежащую ему сторону на отрезки, пропорциональные двум другим сторонам (рис. 84).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_088.png

Рис. 84.

Если ? = ?, то

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_089.png

или

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_090.png

Признаки подобия треугольников.

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны (рис. 85).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_091.png

Рис. 85.

Треугольники ABC и A1B1C1 – подобные, т. к. ? = ?1 и ? = ?1.

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, образованные этими сторонами, равны, то треугольники подобны (рис. 86).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_092.png

Рис. 86.

Треугольники ABC и A1B1C1 – подобны, т. к.

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_093.png

и ? = ?1.

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны (рис. 87).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_094.png

Рис. 87.

Треугольники ABC и A1B1C1 – подобны, т. к

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_095.png
5. Основные геометрические неравенства

Соотношение длин наклонной и перпендикуляра.

Если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше (рис. 88):

АА' < АВ < АС; если А'С > А'В, то АС > АВ.

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_096.png

Рис. 88.

Неравенство треугольника.

Каковы бы ни были три точки, расстояние между любыми двумя из этих точек не больше суммы расстояний от них до третьей точки. Отсюда следует, что в любом треугольнике каждая сторона меньше суммы двух других сторон (рис. 89):

АС < АВ + ВС.

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_097.png

Рис. 89.

Связь между величинами сторон и величинами углов в треугольнике.

В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол (рис. 90).

(BC < AB < AC) ? (?А < ?С < ?В).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_098.png

Рис. 90.

6. Основные геометрические места точек на плоскости

Геометрическим местом точек плоскости, равноудалённых от сторон угла, будет биссектриса данного угла (рис. 91).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_099.png

Рис. 91.

АК = AT, где А – любая точка на биссектрисе.

Геометрическим местом точек, равноудалённых от двух данных точек, будет прямая, перпендикулярная к отрезку, соединяющему эти точки, и проходящая через его середину (рис. 92).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_100.png

Рис. 92.

MA = MB, где М – произвольная точка на серединном перпендикуляре отрезка АВ.

Геометрическим местом точек плоскости, равноудалённых от заданной точки, будет окружность с центром в этой точке (рис. 93).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_101.png

Рис. 93.

Точка О равноудалена от точек окружности.

Местоположение центра окружности, описанной около треугольника.

Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон (рис. 94).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_102.png

Рис. 94.

А, В, С – вершины треугольника, лежащие на окружности.

АМ = МВ и АК = КС.

Точки М и К – основания перпендикуляров к сторонам АВ и АС соответственно.

Местоположение центра окружности, вписанной в треугольник.

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис (рис. 95).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_103.png

Рис. 95.

В ?ABC отрезки AT и СК являются биссектрисами.

7. Теоремы о четырёхугольниках

Свойства параллелограмма.

У параллелограмма противолежащие стороны равны. У параллелограмма противолежащие углы равны.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам (рис. 96).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_104.png

Рис. 96.

АВ = CD, ВС = AD, ?BAD = ?BCD, ?АВС = ?ADC, AO = OC, BO = OD.

Признаки параллелограмма.

Если у четырёхугольника две стороны параллельны и равны, то он является параллелограммом (рис. 97).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_105.png

Рис. 97.

ВС||AD, ВС = AD ? ABCD – параллелограмм.

Если диагонали четырёхугольника пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник – параллелограмм (рис. 98).

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_106.png

Рис. 98.

АО = ОС, ВО = OD ? ABCD – параллелограмм.

Свойства прямоугольника.

Для прямоугольника характерны все свойства параллелограмма (у прямоугольника противолежащие стороны равны; у прямоугольника противолежащие углы равны (90°); диагонали прямоугольника пересекаются и точкой пересечения делятся пополам).

Диагонали прямоугольника равны (рис. 99):

АС = BD.

Геометрия: Планиметрия в тезисах и решениях. 9 класс i_107.png

Рис. 99.

Признак прямоугольника.

Если у параллелограмма все углы равны, то он является прямоугольником.

Свойства ромба.

Для ромба характерны все свойства параллелограмма (у ромба противолежащие стороны равны – вообще все стороны по определению равны; у ромба противолежащие углы равны; диагонали ромба пересекаются и точкой пересечения делятся пополам).


Перейти на страницу:
Изменить размер шрифта: