Первоначально Мэй не разглядел все изображение, однако те его фрагменты, которые он смог просчитать, представлялись ему весьма неустойчивыми. В системе реального мира наблюдатель видел лишь вертикальную часть, соответствующую каждый раз лишь одному параметру, а значит, рассматривал лишь один из типов поведения — вероятно, стабильное состояние, может быть, семилетний цикл или видимую невооруженным глазом беспорядочность. И совсем невозможно было догадаться, что одна и та же система при небольшом изменении одного из параметров могла обнаружить совершенно не похожие друг на друга типы поведения.
Джеймс Йорк с математической точностью проанализировал описанные явления в упомянутой выше работе, доказав, что в любойодномерной системе происходит следующее: если появляется регулярный цикл с тремя волнами, то в дальнейшем система начнет демонстрировать как правильные циклы любой другой продолжительности, так и полностью хаотичные. Это открытие подействовало на физиков вроде Фримена Дайсона словно электрошок, ибо противоречило интуиции. Им казалось вполне тривиальной задачей построение системы, которая повторяет саму себя в трехволновых колебаниях без всякого проявления хаоса. Йорк доказал, что это невозможно.
Хотя подобное предположение выглядело весьма смелым, Йорк посчитал, что общественный резонанс, вызванный его работой, перевесит ее математическое содержание, и отчасти оказался прав. Несколько лет спустя он прибыл на международную конференцию в Восточный Берлин. По окончании докладов Йорк решил прокатиться по реке Шпрее. Во время прогулки с ним попытался заговорить какой-то русский. Обратившись за помощью к знакомому поляку, Йорк понял, что русский математик достиг идентичного результата. Собеседник Йорка отказался вдаваться в детали, пообещав лишь выслать свою статью, которая и пришла через четыре месяца. Как выяснилось, А. Н. Сарковский несколько опередил Йорка. Однако Йорк достиг большего, чем просто математический результат: он продемонстрировал физикам, что хаос вездесущ, стабилен и структурирован. Он дал повод поверить в то, что сложные системы, традиционно сводившиеся к трудным для решения дифференциальным уравнениям, могли быть описаны с помощью довольно простых графиков.
Эта встреча двух поглощенных своими идеями и оживленно жестикулирующих математиков стала знаком того, что занавес между советской и западной наукой все еще существует. Частично из-за языкового барьера, частично из-за ограничений на передвижение по Советскому Союзу западные ученые нередко повторяли результаты, уже опубликованные в советской научной литературе. Зарождение новой науки в США и Европе вдохновило многих специалистов в Советском Союзе на изучение хаоса, и исследования шли параллельно. С другой стороны, ученые из СССР с удивлением выяснили, что львиная доля новых научных веяний для них вовсе не нова. Советские математики и физики уже давно и упорно пытались постичь природу хаоса, начало этому положили еще работы А. Н. Колмогорова 50-х годов. Более того, советские специалисты, как правило, действовали вместе, что помогало представителям двух дисциплин преодолеть разногласия, столь частые в научной среде других стран.
Советские ученые оказались восприимчивыми к изысканиям Смэйла, чья подкова наделала много шума в 60-х годах. Блестящий физик и математик Яков Синай быстро применил аналогичные соображения в термодинамике. Едва в 70-х годах с работой Лоренца познакомились западные физики, она приобрела известность и в СССР. В 1975 г., когда Йорк и Мэй прилагали немалые усилия к тому, чтобы добиться внимания коллег, Синай и его товарищи быстро организовали в Горьком исследовательскую группу, куда вошли талантливые физики. Некоторые западные специалисты по хаосу наведывались в Союз, но большинство вынуждены были довольствоваться западной версией науки о хаосе.
Йорк и Мэй первыми на Западе в полной мере осознали важность удваивания периодов и сумели передать это осознание всему научному сообществу. Те несколько математиков, которые все-таки заметили необычное явление, отнеслись к нему как к технической проблеме, числовой странности, своего рода игре. Они сочли это не то чтобы обыденностью, а скорее, очередным фактом своей особой Вселенной.
Биологи, которым недоставало искушенности математиков да и просто поводов для изучения беспорядочного поведения упустили эти разветвления по пути к хаосу, а математики, заметив их, двигались дальше. Мэй же, наполовину математик, наполовину биолог, понял, что открыл для себя удивительный, магический мир.
Чтобы глубже проникнуть в простейшую систему, ученые нуждались в мощных вычислительных машинах. Фрэнку Хоппенштедту из Института математических наук Нью-Йоркского университета возможности его компьютера позволили даже создать своеобразный фильм.
Хоппенштедт, математик, увлекшийся биологией, прогнал разностное уравнение через свой компьютер модели «Control Data 600» сотни миллионов раз и получил на мониторе изображения для каждого из тысяч различных значений параметра. В результате выявились разветвления, затем хаос, а потом, внутри последнего, небольшие упорядоченные клинья, мимолетные проблески периодичности, где нестабильность казалась лишь преходящей. Ученому, узревшему созданные им самим картины, на миг показалось, что он летит на крыльях над неведомой землей: вот изображение совсем устойчиво, а через мгновение уже наполняется непредсказуемым буйством, бесконечно изумляя своего создателя.
Мэй познакомился с результатом этой работы. Он стал также собирать образчики изображений, полученных представителями других областей: генетиками, экономистами, специалистами по динамике жидкостей. Этот провозвестник хаоса обладал двумя преимуществами перед чистыми математиками. Во-первых, Мэй считал, что простые уравнения не могут абсолютно точно воспроизводить реальность, а являются лишь ее образами, метафорами. Во-вторых, обнаружение хаоса лило воду на его мельницу, возбуждая дебаты.
Рис. 3.3. Набросок разветвленной диаграммы. Такой она представилась Мэю, прежде чем компьютер раскрыл ее глубинную структуру.
Биология популяций вообще долгое время оставалась ареной ожесточенных споров. К примеру, отношения между экологами и молекулярными биологами были весьма натянутыми, так как последние считали свое направление истиннойнаукой, исследующей действительно сложные, запутанные вопросы, но отказывали в этом экологии. Экологи же полагали, что разработки молекулярной биологии лишь дополняют решения и без того уже решенных проблем.
Как представлял себе Мэй, в 70-х годах особо жаркие страсти кипели вокруг вопроса о природе изменений в популяциях. Экологи разделились на два лагеря. Представители первого считали, что мир упорядочен, а следовательно, популяции регулируемы и устойчивы, пусть и с некоторыми исключениями. Специалисты второго лагеря интерпретировали реальные явления прямо противоположным образом: в популяциях, хоть и не во всех, наблюдаются беспорядочные колебания. Не удивительно, что мнения разделились и по вопросу применения сложных математических вычислений к неупорядоченным биологическим объектам. Верившие в устойчивость популяций доказывали, что последние должны регулироваться некими детерминистскими механизмами. Сторонники другой точки зрения полагали, что популяции подвержены колебаниям при воздействии особых факторов среды, устраняющих любой возможный детерминистский сигнал. Выдвигались следующие альтернативы: либо детерминистская математика служит источником стабильности, либо случайные внешние помехи генерируют неупорядоченность.
Пока шли эти оживленные дискуссии, хаос вновь ошеломил ученых: простые детерминистские модели обладали способностью порождать нечто, весьма напоминавшее беспорядочное поведение, которое, впрочем, обладало утонченной структурой, но все же любой ее фрагмент казался неразличимым на фоне постороннего шума. Такое открытие не могло не повлиять на самую сущность споров.