Чем дольше Мэй рассматривал биологические системы сквозь призму простых хаотичных моделей, тем больше он видел моментов, противоречащих общепринятым представлениям. Например, эпидемиологи хорошо знают, что массовые вспышки заболеваний появляются, как правило, с определенной цикличностью — регулярно или иррегулярно. Корь, полиомиелит, краснуха идут в наступление и отступают периодически. Мэй осознал, что колебания могли воспроизводиться нелинейной моделью, и заинтересовался тем, что случится, если система получит внезапный толчок — помеху, вроде массовой вакцинации. Казалось бы, процесс должен плавно изменяться в желаемом направлении. На самом деле, как обнаружил Мэй, начнутся весьма ощутимые колебания. Даже если жестко свести на нет долгосрочную тенденцию, путь к новому равновесию будет прерываться поразительными подъемами. В реальности врачи наблюдали колебания, подобные тем, что смоделировал Мэй. Об этом свидетельствовали фактические данные, например итоги реализации программы по искоренению краснухи в Великобритании. И все же любой служащий системы здравоохранения, услышав о кратковременной вспышке краснухи или гонореи, приписывал ее прежде всего плохо проведенной вакцинации.

За несколько лет изучение хаоса дало сильный толчок развитию теоретической биологии, объединив биологов и физиков в научные коллективы, о которых совсем недавно еще никто и не помышлял. Экологи и эпидемиологи раскопали данные предыдущих лет, которые прежде отбрасывали, считая непригодными для исследований. Черты детерминистского хаоса были обнаружены в эпидемии кори в Нью-Йорке, а также в отслеженных по наблюдениям охотников колебаниях численности популяций канадской рыси в течение двухсот лет. Молекулярные биологи начали рассматривать белки как движущиеся системы. Изменился взгляд физиологов на органы, которые представлялись теперь ученым не застывшими структурами, но объектами, совершающими регулярные и иррегулярные колебания.

Во всех областях знаний профессионалы узрели сложное поведение систем и спорили о нем — Мэй знал это наверняка. Однако специалисты каждой области считали обнаруженный ими тип беспорядочности специфичным, что повергало исследователя просто в отчаяние. А что случилось бы, если бы очевидная случайность исходила от простых моделей? Что, если одни и те жепростые модели могли быть применены к хаосу во многих науках? Мэй понимал, что удивительные структуры, которые он едва-едва начал исследовать, не имели существенной связи с биологией.

Задавшись вопросом, сколько же ученых и в каких еще областях обратили на это внимание, он в 1976 г. начал писать работу, которую считал действительно переломной, — обзорную статью в журнал «Нейчур». Мэй доказывал, что, если бы каждому студенту позволили поэкспериментировать с логистическим разностным уравнением с помощью карманного калькулятора, дела обстояли бы гораздо лучше. Простой расчет, приведенный им в конце публикации, бросал вызов искаженному восприятию возможностей природы, проистекающему из стандартного естественно-научного образования. Он призван был полностью изменить подход к научному исследованию, что бы ни было предметом изучения — экономические циклы или распространение слухов.

Мэй заявлял, что хаос необходимо преподавать. По его мнению, наступило время признать, что принятые повсеместно методы подготовки ученых навязывают им ложные представления о мире. Неважно, насколько далеко продвинется традиционная математика с ее преобразованиями Фурье, ортогональными функциями и регрессионным анализом. Она, утверждал Мэй, неизбежно вводит математиков в заблуждение относительно преимущественно нелинейной Вселенной: «математика настолько ушла в сторону, что, давая студенту необходимые знания, одновременно настраивает его против странных эффектов, проявляющихся в простейшей из всех абстрактных нелинейных систем. Не только в сфере науки, но и в повседневной жизни, в политике и экономике — повсюду мы достигли бы процветания, если бы больше людей понимали, что простые нелинейные системы далеко не всегда обладают простыми динамическими свойствами».

Глава 4

Геометрия природы

…И возникает связь;

Вначале незаметная, она ширится,

Будто тень облака на песке,

Будто отблеск на горном склоне.

Уоллес Стивенс. Знаток хаоса

Бенуа Мандельбро довольно долго и скрупулезно создавал свою мысленную картину мира. В 1960 г. она представляла собой лишь смутный, расплывчатый образ, слабый намек на законченную идею. Однако, увидев ее на доске в офисе Хендрика Хаутхаккера, Мандельбро сразу узнал то, что вынашивал годами.

Сотрудник исследовательского отдела корпорации IBM, в математике он был мастером на все руки. В числе прочего Мандельбро занимался экономикой — изучал распределение крупных и малых доходов в финансовой сфере. Хаутхаккер, профессор экономики в Гарварде, пригласил его на беседу. Прибыв в Литтауэровский центр, величественное здание факультета экономики, молодой математик обнаружил плоды своих изысканий на грифельной доске, где их запечатлела нетвердая старческая рука. «Как здесь оказалась моя диаграмма? — изумился Мандельбро, пряча досаду. — Это что, материализация идей?» Профессор, однако, не мог взять в толк, о чем говорит гость. Диаграмма не имела ничего общего с распределением доходов — она отражала изменение цен на хлопок за последние восемь лет.

Хаос. Создание новой науки i_010.png

Рис. 4.1. Колоколообразная кривая

Впрочем, и сам Хаутхаккер усматривал нечто странное в своем графике. Экономисты всегда считали, что цены на хлопок варьируются как предсказуемым, так и совершенно случайным образом. Долгое время уровень их определялся реальными событиями в экономике: подъемами и спадами в легкой промышленности Новой Англии, освоением новых зарубежных рынков. Краткосрочные колебания носили в той или иной степени случайный характер. Данные Хаутхаккера противоречили его ожиданиям: наблюдалось слишком много больших скачков. Конечно, в большинстве своем ценовые изменения были незначительными, однако соотношение между большими и малыми скачками оказалось не столь высоким, как ожидал профессор. Вероятность подобных событий падала не слишком быстро, и функция, описывающая ее, имела длинный «хвост».

Стандартной моделью указанных вариаций всегда являлась колоколообразная кривая: вблизи ее максимума значения измеряемой величины стремятся к некоторому среднему, а слева и справа от вершины плавно спадают. Эта кривая, называемая функцией Гаусса или функцией нормального распределения отклонений, в среде статистиков столь же ходовой инструмент, как стетоскоп — у врачей. Она проясняет природу случайности. Дело в том, что при изменении параметров любых объектов, изучаемых науками о природе и обществе, измеряемые значения с большей вероятностью стремятся к некоторой средней величине, удаление от которой происходит медленно и плавно. Как говорилось выше, функция Гаусса — весьма полезный инструмент, но даже она не всегда помогает проложить дорогу в дебрях экономики. Как выразился лауреат Нобелевской премии Василий Леонтьев, «ни в одной из эмпирических сфер исследования столь эффективный статистический аппарат не используется со столь неопределенными результатами».

Построенный Хаутхаккером график никак не желал принимать форму функции нормального распределения. Вместо этого кривая ценовых изменений приобретала очертания, которые Мандельбро начал распознавать в графиках удивительно далеких, несопоставимых друг с другом явлений. В отличие от других математиков, при столкновении с требующими ответа вопросами он прислушивался к своей интуиции, доверял своему нюху на модели и формы. Не полагаясь на анализ, он верил образам, что зрели в сознании. В нем крепло убеждение, что течение случайных, стохастических процессов подчиняется особым законам. Вернувшись в огромный исследовательский центр корпорации IBM, Мандельбро внес информацию Хаутхаккера о ценах на хлопок в компьютерную базу данных, а позже обратился в Министерство сельского хозяйства с просьбой выслать дополнительные сведения, восходящие к 1900 г.


Перейти на страницу:
Изменить размер шрифта: