Перекрестились они и на сей раз, в вопросе о происхождении цвета неба. До этого Мандельштам в основном увлекался радиотехникой. Для начала нашего века это была совершенно новая область науки, и в ней мало кто разбирался. После открытия А.С. Попова (в 1895 году) прошло всего несколько лет, и здесь был непочатый край работы. За короткий период Мандельштам выполнил много серьезных исследований в области электромагнитных колебаний применительно к радиотехническим устройствам. В 1902 году он защитил диссертацию и в двадцать три года получил степень доктора натуральной философии Страсбургского университета.
Занимаясь вопросами возбуждения радиоволн, Мандельштам, естественно, изучал труды Рэлея, который был признанным авторитетом в исследовании колебательных процессов. И молодой доктор поневоле познакомился с проблемой окраски неба.
Но, познакомившись с вопросом окраски неба, Мандельштам не только показал ошибочность, или, как он сам говорил, «недостаточность» общепризнанной теории молекулярного рассеяния света Рэлея, не только раскрыл тайну голубого цвета неба, но и положил начало исследованиям, которые привели к одному из важнейших открытий физики XX века.
А началось все с заочного спора с одним из крупнейших физиков, отцом квантовой теории, М. Планком. Когда Мандельштам познакомился с теорией Рэлея, она захватила его своей недоговоренностью и внутренними парадоксами, которых, к удивлению молодого физика, не замечал старый, многоопытный Рэлей. Особенно отчетливо выявилась недостаточность теории Рэлея при анализе другой теории, построенной на ее основе Планком для объяснения ослабления света при его прохождении через оптически однородную прозрачную среду.
В этой теории было принято за основу, что сами молекулы вещества, через которое проходит свет, являются источниками вторичных волн. На создание этих вторичных волн, утверждал Планк, тратится часть энергии проходящей волны, которая при этом ослабляется. Мы видим, что эта теория основывается на рэлеевской теории молекулярного рассеяния и опирается на ее авторитет.
Проще всего уяснить себе суть дела, рассматривая волны на поверхности воды. Если волна встречается с неподвижными или плавающими предметами (сваи, бревна, лодки и т.п.), то во все стороны от этих предметов разбегаются мелкие волны. Это есть не что иное, как рассеяние. Часть энергии падающей волны расходуется на возбуждение вторичных волн, которые вполне аналогичны рассеянному свету в оптике. При этом первоначальная волна ослабляется — она затухает.
Плавающие предметы могут быть намного меньше, чем длина волны, бегущей по воде. Даже мелкие зерна будут вызывать вторичные волны. Конечно, по мере уменьшения размеров частиц образуемые ими вторичные волны ослабевают, но они все же будут забирать энергию основной волны.
Примерно так представлял себе процесс ослабления световой волны при прохождении ее через газ Планк, но роль зерен в его теории играли молекулы газа.
Этой работой Планка заинтересовался Мандельштам.
Ход мыслей Мандельштама также можно пояснить с помощью примера волн на поверхности воды. Нужно лишь рассмотреть его более внимательно. Итак, даже мелкие зерна, плавающие на поверхности воды, являются источниками вторичных волн. Но что будет, если насыпать эти зерна так густо, что они покроют всю поверхность воды? Тогда окажется, что отдельные вторичные волны, вызванные многочисленными зернами, будут складываться так, что они полностью погасят те части волн, которые бегут в стороны и назад, и рассеяние прекратится. Останется лишь волна, бегущая вперед. Она побежит вперед, совершенно не ослабляясь. Единственным результатом присутствия всей массы зерен окажется некоторое уменьшение скорости распространения первичной волны. Особенно важно, что все это не зависит от того, неподвижны ли зерна или они движутся по поверхности воды. Совокупность зерен будет действовать просто как нагрузка на поверхность воды, изменяя плотность ее верхнего слоя.
Мандельштам произвел математический расчет для случая, когда число молекул в воздухе так велико, что даже на таком маленьком участке, как длина световой волны, содержится очень большое число молекул. Оказалось, что при этом вторичные световые волны, возбуждаемые отдельными хаотически движущимися молекулами, складываются так же, как волны на примере с зернами. Значит, в этом случае световая волна распространяется без рассеяния и ослабления, но с несколько меньшей скоростью. Это опровергало теорию Рэлея, считавшего, что движение рассеивающих частиц во всех случаях обеспечивает рассеяние волн, а значит, опровергало и основанную на ней теорию Планка.
Так под фундаментом теории рассеяния был обнаружен песок. Все величественное здание заколебалось и грозило рухнуть.
Но как обстоит дело с определением числа Лошмидта из измерений голубого свечения неба? Ведь опыт подтверждал рэлеевскую теорию рассеяния!
«Это совпадение должно рассматриваться как случайное», — писал Мандельштам в 1907 году в своей работе «Об оптически однородных и мутных средах».
Мандельштам показал, что беспорядочное движение молекул не может сделать газ однородным. Наоборот, в реальном газе всегда имеются мельчайшие разрежения и уплотнения, образующиеся в результате хаотического теплового движения. Вот они-то и приводят к рассеянию света, так как нарушают оптическую однородность воздуха. В той же работе Мандельштам писал:
«Если среда оптически неоднородна, то, вообще говоря, падающий свет будет рассеиваться и в стороны».
Но так как размеры неоднородностей, возникающих в результате хаотического движения, меньше длины световых волн, то рассеиваться будут преимущественно волны, соответствующие фиолетовой и синей части спектра. А это приводит, в частности, к голубой окраске неба.
Так была окончательно решена загадка небесной лазури. Теоретическая часть была разработана Рэлеем. Физическая природа рассеивателей была установлена Мандельштамом.
Большая заслуга Мандельштама заключается в том, что он доказал, что предположение о совершенной однородности газа несовместимо с фактом рассеяния в нем света. Он понял, что голубой цвет неба доказывает, что однородность газов только кажущаяся. Точнее, газы представляются однородными только при исследовании грубыми приборами, такими, как барометр, весы или другие приборы, на которые воздействуют сразу многие миллиарды молекул. Но световой луч ощущает несравнимо меньшие количества молекул, измеряемые лишь десятками тысяч. И этого достаточно, чтобы бесспорно установить, что плотность газа непрерывно подвергается небольшим местным изменениям. Поэтому однородная с нашей «грубой» точки зрения среда в действительности неоднородна. С «точки зрения света» она кажется мутной и поэтому рассеивает свет.
Случайные местные изменения свойств вещества, образующиеся в результате теплового движения молекул, теперь носят название флуктуаций. Выяснив флуктуационное происхождение молекулярного рассеяния света, Мандельштам проложил дорогу новому методу исследования вещества — флуктуационному, или статистическому, методу, впоследствии развитому Смолуховским, Лорентцем, Эйнштейном и им самим в новый крупный отдел физики — статистическую физику.
Итак, тайна голубого цвета неба была раскрыта. Но изучение рассеяния света на этом не прекратилось. Обратив внимание на почти неуловимые изменения плотности воздуха и объяснив окраску неба флуктуационным рассеянием света, Мандельштам своим обостренным чутьем ученого обнаружил новую, еще более тонкую особенность этого процесса.
Ведь неоднородности воздуха вызваны случайными колебаниями его плотности. Величина этих случайных неоднородностей, плотность сгустков меняется со временем. Поэтому, рассуждал ученый, должна меняться со временем и интенсивность — сила рассеянного света! Ведь чем плотнее сгустки молекул, тем интенсивнее рассеянный на них свет. А так как эти сгустки возникают и исчезают хаотически, то небо, попросту говоря, должно мерцать! Сила его свечения и его цвет должны все время (но очень слабо) изменяться! Но разве кто-нибудь, когда-нибудь замечал такое мерцание? Конечно, нет.