Это эффект настолько тонкий, что простым глазом его не заметишь.
Ни один из ученых тоже не наблюдал подобного изменения свечения неба. Не имел возможности проверить выводы своей теории и сам Мандельштам. Организации сложнейших экспериментов препятствовали сначала скудные условия царской России, а потом трудности первых лет революции, иностранной интервенции и гражданской войны.
В 1925 году Мандельштам стал заведующим кафедрой в Московском университете. Здесь он встретился с выдающимся ученым и искусным экспериментатором Григорием Самуиловичем Ландсбергом. И вот, связанные глубокой дружбой и общими научными интересами, они вместе продолжили штурм тайн, скрытых в слабых лучах рассеянного света.
Оптические лаборатории университета в те годы были еще очень бедны приборами. В университете не оказалось ни одного прибора, способного обнаружить мерцание неба или те маленькие различия в частотах падающего и рассеянного света, которые, как предсказывала теория, являются результатом этого мерцания.
Однако это не остановило исследователей. Они отказались от мысли имитировать небо в лабораторных условиях. Это только усложнило бы и без того тончайший опыт. Они решили изучать не рассеяние белого — сложного света, а рассеяние лучей одной, строго определенной частоты. Если они будут точно знать частоту падающего света, будет много легче искать те близкие к ней частоты, которые должны возникнуть при рассеянии. Кроме того, теория подсказывала, что наблюдения легче проводить в твердых телах, так как в них молекулы расположены гораздо теснее, чем в газах, а рассеяние тем больше, чем плотнее вещество.
Начались кропотливые поиски наиболее подходящих материалов. Наконец выбор пал на кристаллы кварца. Просто потому, что крупные прозрачные кристаллы кварца доступнее, чем любые другие.
Два года длились подготовительные опыты, отбирались наиболее чистые образцы кристаллов, совершенствовалась методика, устанавливались признаки, по которым можно было бесспорно отличить рассеяние на молекулах кварца от рассеяния на случайных включениях, неоднородностях кристалла и загрязнениях.
Не обладая мощной аппаратурой для спектрального анализа, ученые избрали остроумный обходный путь, который должен был дать возможность воспользоваться имеющимися приборами.
Основной трудностью в этой работе было то, что на слабый свет, вызванный молекулярным рассеянием, накладывался намного более сильный свет, рассеянный небольшими загрязнениями и другими дефектами тех образцов кристаллов, которые удалось заполучить для опытов. Исследователи решили воспользоваться тем, что рассеянный свет, образованный дефектами кристалла и отражениями от различных частей установки, точно совпадает по частоте с падающим светом. Их же интересовал только свет с частотой, измененной в соответствии с теорией Мандельштама, Таким образом, задача состояла в том, чтобы на фоне этого намного более яркого света выделить свет измененной частоты, вызванный молекулярным рассеянием.
Чтобы рассеянный свет имел величину, доступную регистрации, ученые решили освещать кварц самым мощным из доступных им осветительных приборов: ртутной лампой.
Итак, свет, рассеянный в кристалле, должен состоять из двух частей: из слабого света измененной частоты, обусловленного молекулярным рассеянием (исследование этой части являлось целью ученых), и из гораздо более сильного света неизмененной частоты, вызванного посторонними причинами (эта часть была вредной, она затрудняла исследование).
Идея метода привлекала своей простотой: надо поглотить свет неизменной частоты и пропустить в спектральный аппарат только свет измененной частоты. Но различия частоты составляли лишь несколько тысячных долей процента. Ни в одной лаборатории мира не существовало фильтра, способного разделить столь близкие частоты. Однако выход был найден.
Рассеянный свет был пропущен через сосуд с парами ртути. В результате весь «вредный» свет «застрял» в сосуде, а свет «полезный» прошел без заметного ослабления. Экспериментаторы при этом воспользовались одним уже известным обстоятельством. Атом вещества, как утверждает квантовая физика, способен излучать световые волны только вполне определенных частот. Вместе с тем этот атом способен и поглощать свет. Причем только световые волны тех частот, которые он сам может излучать.
В ртутной лампе свет испускается парами ртути, светящейся под влиянием электрического разряда, происходящего внутри лампы. Если этот свет пропустить через сосуд, также содержащий пары ртути, он будет почти полностью поглощен. Случится то, что предсказывает теория: атомы ртути в сосуде поглотят свет, излучаемый атомами ртути в лампе.
Свет от других источников, например от неоновой лампы, пройдет сквозь пары ртути невредимым. На него атомы ртути даже не обратят внимания. Не будет поглощена и та часть света ртутной лампы, которая рассеялась в кварце с изменением длины волны.
Вот этим-то удобным обстоятельством и воспользовались Мандельштам и Ландсберг.
В 1927 году начались решающие опыты. Ученые осветили кристалл кварца светом ртутной лампы, обработали результаты. И... удивились.
Результаты опыта были неожиданны и необычны. Ученые обнаружили совсем не то, что ожидали, не то, что было предсказано теорией. Они открыли совершенно новое явление. Но какое? И не ошибка ли это? В рассеянном свете были обнаружены не ожидаемые частоты, но частоты гораздо более высокие и более низкие. В спектре рассеянного света появилась целая комбинация частот, которых не было в падающем на кварц свете. Объяснить их появление оптическими неоднородностями в кварце было просто невозможно.
Началась тщательная проверка. Опыты проводились безупречно. Они были задуманы настолько остроумно, совершенно и изобретательно, что ими нельзя было не восторгаться.
— Так красиво и подчас гениально просто решались Леонидом Исааковичем иной раз очень непростые технические задачи, что невольно у каждого из нас возникал вопрос: «Почему это раньше не пришло мне в голову?» — рассказывает один из сотрудников.
Разнообразные контрольные опыты упорно подтверждали, что ошибки нет. На фотографиях спектра рассеянного света упорно появлялись слабые и, тем не менее, вполне явные линии, свидетельствующие о наличии в рассеянном свете «лишних» частот.
Многие месяцы ученые искали объяснение этому явлению. Откуда в рассеянном свете появились «чужие» частоты?!
И настал день, когда Мандельштама осенила изумительная догадка. Это было удивительное открытие, то самое, которое и теперь считается одним из важнейших открытий XX века.
Но и Мандельштам и Ландсберг пришли к единодушному решению, что опубликовать это открытие можно лишь после солидной проверки, после исчерпывающего проникновения в глубь явления. Завершающие опыты начались.
31 марта 1928 года вышел из печати очередной номер английского журнала «Nature» («Природа»).
16 февраля индийские ученые Ч.Н. Раман и К.С. Кришнан отправили из Калькутты в этот журнал телеграмму с коротким описанием своего открытия.
В журнал «Природа» в те годы со всего света стекались письма о самых различных открытиях. Но не всякому сообщению суждено вызвать волнение среди ученых. Когда же из печати вышел номер с письмом индийских ученых, физики очень взволновались. Уже одно заглавие заметки — «Новый тип вторичного излучения» — возбуждало интерес. Ведь оптика — одна из старейших наук, открыть в ней что-нибудь неведомое в XX веке удавалось совсем не часто.
Можно представить себе, с каким интересом ожидали физики всего мира новых писем из Калькутты.
Их интерес в немалой степени подогревался и самой личностью одного из авторов открытия, Рамана. Это человек любопытной судьбы и незаурядной биографии, очень сходной с эйнштейновской. Эйнштейн в молодости был простым преподавателем гимназии, а затем служащим патентного бюро. Именно в этот период он закончил самые значительные из своих работ. Раман, блестящий физик, тоже после окончания университета вынужден был в течение десяти лет служить в департаменте финансов и лишь после этого был приглашен на кафедру Калькуттского университета. Раман скоро стал признанным главой индийской школы физиков.