В процессе развития количественное содержание ДНК может сильно меняться вплоть до ее полного исчезновения, как это наблюдал Браше в неоплодотворенных яйцах морского ежа или как наблюдали Крупко и Денли в ядре яйцеклетки и зрелом зародышевом мешке у Aloe davyana (Krupko, Denley, 1956). Разбирая опыты Лизона и Пастилса, проследивших изменение содержания ДНК в ядрах развивающегося морского ежа, Браше (1955) пишет: «Результаты этого исследования (которое необходимо распространить и на другие виды) показывают также, что содержание ДНК в разных ядрах не обязательно кратно ее содержанию в сперматозоидах, как это предполагали раньше». Демяновская и Белозерский (1954), Демяновская (1957), Прокофьева-Бельговская и Демяновская (1957) показали, что на определенной стадии развития мицелия лучистого гриба Actinomyces globisporus streptomycini ДНК исчезает, а вместо нее появляется другая нуклеиновая кислота, у которой вместо тимина иное основание.

При выяснении роли ДНК большое значение придается специфике воздействия ультрафиолетовых лучей на мутационный процесс. Факты большей частоты мутаций при облучении ультрафиолетовым светом с длиной волны 2 600 Å используются как доказательство связи процесса мутирования с ДНК: последняя как раз максимально адсорбирует лучи с этой длиной волны. Однако необходимо подчеркнуть, что такой вывод сильно преувеличен. Чтобы убедиться в этом, достаточно вспомнить данные Мак-Олей и Форда (McAulay, Ford, 1947) и Холлендера (Hollaender, Emmons, 1941). Первые авторы показали, что наивысшая эффективность облучения гриба Chaetomium globosum соответствует спектру поглощения белка. Холлендер и Эммонс нашли, что кривая частоты мутаций, вызванных ультрафиолетовым облучением, имеет два максимума: больший совпадает с длиной волны 2650 Å, меньший — 2280 Å. Даже максимум при 2650 Å Холлендер и Эммонс не связывают только с ДНК, хотя она и показывает наибольшую величину поглощения лучей этой длины. «Это не обязательно означает, — иишут они, — что нуклеиновая кислота является единственным компонентом клетки, ответственным за этот максимум. Белки и некоторые энзимы, присутствующие в очень низких концентрациях, могут содействовать получению максимума при этой длине волны». Второй же максимум, по мнению названных авторов, обусловлен поглощением лучей ядерным белком.

Хочкис (1957) также не считает возможным рассматривать совпадение данных о поглощении лучей с частотой мутаций как доказательство того, что возникновение мутаций обусловлено изменениями в молекуле ДНК, и видеть в этом подтверждение генетической роли последней. Он пишет: «Однако специфичность этого поглощения недостаточна для того, чтобы считать полученные данные безусловным доказательством отсутствия эффективного поглощения также со стороны белка, и действительно, мутагенное действие в области максимума для белков значительно». И далее: «Эти соображения, а также то обстоятельство, что добавленные вещества и факторы среды могут существенно изменять число мутаций, обнаруживаемых после облучения, заставляют подходить с осторожностью к данным о действии облучения и не делать на основании этих данных заключений о химической природе генов».

Приходится удивляться той легкости, с какой некоторые авторы пытаются опереться на разобранные выше данные, как на несомненное доказательство исключительной генетической роли ДНК.

Выяснению физиологической роли ДНК за последние 15 лет было посвящено большое количество исследований. Эти исследования, давшие исключительно ценные выводы относительно роли ДНК в синтезе белковой — молекулы и о структуре ДНК. выдвинули и ряд новых проблем, ожидающих своего решения. Касперсон (Caspersson, 1941) высказал предположение о том. что ядро является центром синтеза белка, связывая этот синтез с ролью ДНК. Однако прямые исследования биосинтеза в безъядерных фрагментах водоросли Acetabularia, выполненные Геммерлингом, а затем Браше и другими исследователями (Brachet, Feener, 1944; Hultin, 1950; Keller, 1951; Siekevitz, Zamecnik, 1951), показали, что цитоплазматические белки синтезируются в микросомах (зернистых частичках, находящихся в клетках). Так, Геммерлинг и Штих (Hammerling, Stich, 1956) установили, что скорость включения радиоактивного фосфора (Р32) в фрагменты Acetabularia mediterranea, содержащие ядро и лишенные его, одинакова. Браше с сотрудниками (Brachet, 1933; Brachet и др., 1955) изучали роль ядра в синтезе белка также у Acetabularia и установили, что синтез белка возможен и в отсутствии ядра, а включение меченых предшественников в белки в безъядерных фрагментах происходит на протяжении месяцев с нормальной скоростью. Браше считает, что «ядро контролирует синтез белка лишь косвенно» (Браше, 1955). Шпигельман с сотрудниками (Baron, Spiegelman, Quastler, 1953) облучали бактерии летальными (смертельными) дозами Х-лучей и нашли, что синтез ДНК нарушается сравнительно быстро, тогда как синтез протеина и РНК сохраняется.

Много еще неясного и в синтезе нуклеиновых кислот. Освещая работу III Международного биохимического конгресса, состоявшегося в 1955 году, Н. М. Сисакян (1956) пишет: «Оказалось, что ферменты, связанные с обменом РНК и ДНК, локализованы главным образом в митохондриях[9]. Эти факты явились неожиданными, поскольку сама ДНК локализована в ядре, а РНК, хотя и присутствует во всех частях клетки, но главным образом сконцентрирована в микросомах».

Следовательно, и примеры из области «косвенных доказательств» не дают оснований видеть в ДНК единственного, уникального носителя наследственности.

Наконец, укажем еще на один довод, который усиленно используется для обоснования взглядов на ДНК как на наследственный материал. За последние десять лет достигнуты большие успехи в изучении химической структуры нуклеиновых кислот. Исследованиями Гулланда (Gulland и др., 1947), Чаргаффа (Chargaff, 1952) и других было показано несоответствие между имеющимися фактами и тетрануклеотидной теорией строения нуклеиновых кислот. Результаты рентгеноструктурного анализа, выполненного рядом исследователей, позволили Уотсону и Крику (Watson, Crick, 1953) предложить модель стереохимической структуры молекулы ДНК.

Нет возможности изложить здесь химическую основу гипотезы Уотсона и Крика, как и дополняющих или изменяющих ее новых вариантов, предложенных другими исследователями. В этом и нет необходимости, так кап имеется обстоятельное изложение новых представлений о строении нуклеиновых кислот, сделанное одним из лучших наших специалистов в этой области А. Н. Белозерским (Белозерский и Спирин, 1956). Подчеркнем лишь, что эти новые представления облегчили понимание ряда вопросов (но не решили их), таких, как проблема удвоения хромосомы с точным воспроизведением ее качественной дифференцировки, проблема генетической специфичности и ее неисчерпаемого многообразия и т. д. Молекула ДНК с ее специфическим расположением пуриновых и пиримидиновых мононуклеотидов в гигантской поли нуклеотидной цепи рассматривается теперь в качестве матрицы, на которой осуществляется синтез белка.

При всем значении модели строения молекулы ДНК нет еще достаточных данных, которые позволяли бы так широко использовать эту модель для обоснования представлений о природе «наследственного вещества», как это делают сторонники хромосомной теории. Пока и в этом вопросе все еще продолжает оставаться порочный круг, из которого необходимо найти выход.

В самом деле, в своих построениях представители классической генетики опираются теперь на модель, предложенную Уотсоном и Криком, как на нечто окончательно доказанное. В то же время сами Уотсон и Крик для обоснования справедливости предложенной ими модели строения молекулы ДНК ищут поддержки в данных генетики. Об этом говорят следующие заключительные строки одной из их работ: «Во всяком случае, фактические данные, подтверждающие как предложенную нами модель, так и схему самовоспроизведения, будут значительно подкреплены, если удастся ясно показать, что генетическая специфичность обеспечивается одной лишь ДНК и будет выяснено с молекулярной точки зрения, каким образом особенности структуры ДНК могут оказывать специфическое влияние на клетку» (Уотсон и Крик, 1957). О последнем, т. е. специфическом влиянии на клетку, в настоящее время вообще ничего сказать нельзя… Что касается генетической роли ДНК. то, как это видно уже из приведенного материала, нельзя считать, что только ей одной присуща генетическая функция.

вернуться

9

Нитевидные образования в клетках.


Перейти на страницу:
Изменить размер шрифта: