Примерами движений плоскости являются осевая и центральная симметрия, параллельный перенос, поворот. Как пример, напомним определение параллельного переноса. Пусть
- некоторый вектор плоскости α. Геометрическое преобразование, переводящее каждую точку A ∈ α в такую точку A' что (рис. 1), называется параллельным переносом на вектор . Параллельный перенос является движением: если точки A и B переходят в A' и B', т.е. , , то , и потому |A'B'| = |AB|.
Рис. 1
При решении геометрических задач с помощью движений часто применяется свойство сохранения пересечения: при любом движении f пересечение фигур переходит в пересечение их образов, т.е. если P,Q - произвольные фигуры, то фигура P ∩ Q переходит в результате движения f в фигуру f(P) ∩ f(Q). (Аналогичное свойство справедливо для объединения.)
Задача 1. Окружность, центр которой принадлежит биссектрисе угла, пересекает его стороны в точках A,B,C и D (рис. 2). Доказать, что |AB|=|CD|.
Рис. 2
Решение. Обозначим через P одну из сторон угла, а через Q - круг, границей которого является рассматриваемая окружность. При симметрии s относительно биссектрисы угла луч P переходит в луч P', который образует вторую сторону угла, а круг Q переходит в себя: s(P) = P', s(Q) = Q. Согласно свойству сохранения пересечения фигура P ∩ Q переходит в s(P) ∩ s(Q), т. е. в P'∩Q. Иначе говоря, отрезок AB переходит в отрезок CD, и потому |AB|=|CD|.
Задача 2. Через точку A, данную внутри угла (меньшего, чем развернутый), провести прямую, отрезок которой, заключенный между сторонами угла, делится в этой точке пополам.
Решение. Обозначим через z симметрию относительно точки A, а через P и Q - прямые, на которых лежат стороны угла (рис. 3). В результате симметрии z прямая P переходит в параллельную ей прямую P' которая пересекает вторую сторону угла в точке C. Так как C ∈ P', то точка D, симметричная C, принадлежит прямой, которая симметрична P', т.е. D ∈ P. Таким образом, точки D ∈ P и C ∈ Q симметричны относительно A, и потому отрезок CD делится в точке A пополам, т.е. прямая CD - искомая.
Рис. 3
Нетрудно понять, почему в задаче 1 была применена осевая, а в задаче 2 – центральная симметрия. Так как биссектриса угла – его ось симметрии, то попытка применить осевую симметрию в задаче 1 совершенно естественна (так же, как и применение центральной симметрии в задаче 2, поскольку отрезок CD должен делиться в точке A пополам, т.е. искомые точки C и D должны быть симметричными относительно точки A). И в других случаях анализ условия задачи позволяет найти движение, применение которого дает решение.
Задача 3. На сторонах AB и BC треугольника ABC построены вне его квадраты ABMQ и BCPN. Доказать, что отрезок MN перпендикулярен медиане BD треугольника ABC и вдвое длиннее этой медианы.
Решение. Попытаемся применить поворот на 90°, т. е. убедиться, что при повороте на 90° вокруг точки B (по часовой стрелке) отрезок MN перейдет в отрезок, параллельный BD и имеющий вдвое большую длину. При этом повороте вектор
переходит в (рис. 4), а вектор в . Следовательно, вектор переходит в , т. е. в . Но так как , то . Итак, при повороте на 90° вектор переходит в , т.е. в вектор, равный . Отсюда вытекает, что и |MN| = 2|BD|.
Рис. 4
Весьма существенна связь движений с ориентацией. На рис. 5 изображен многоугольник F, на контуре которого задано положительное направление обхода (против часовой стрелки). При параллельном переносе получается многоугольник с тем же направлением обхода, т.е. параллельный перенос сохраняет направление обхода, или, как говорят, сохраняет ориентацию. Поворот (в частности, центральная симметрия, представляющая собой поворот на 180°) также сохраняет ориентацию (рис. 6). Напротив, осевая симметрия меняет направление обхода на противоположное (рис. 7), т.е. меняет ориентацию. Другой пример движения, меняющего ориентацию – скользящая симметрия, т.е. композиция симметрии относительно некоторой прямой l и параллельного переноса, вектор которого параллелен l (рис. 8).
Рис. 5
Рис.6
Рис. 7
Рис. 8
Французский механик и геометр XIX в. М. Шаль сформулировал следующую теорему: всякое сохраняющее ориентацию движение плоскости является либо параллельным переносом, либо поворотом; всякое меняющее ориентацию движение плоскости является либо осевой, либо скользящей симметрией.
Задача 4. Доказать, что композиция двух осевых симметрий с пересекающимися осями представляет собой поворот.
Решение. Пусть s1 и s2 - осевые симметрии, оси которых (прямые l1 и l2) пересекаются в точке O. Так как оба движения s1,s2 меняют ориентацию, то их композиция s2 ∘ s1 (сначала выполняется s1, затем s2) является движением, сохраняющим ориентацию. По теореме Шаля, s2 ∘ s1 есть либо параллельный перенос, либо поворот. Но так как при каждом движении s1,s2 точка O неподвижна, то и при их композиции точка O остается на месте. Следовательно, s2 ∘ s1 есть поворот вокруг точки O. Как найти угол поворота, понятно из рис. 9: если φ - угол между прямыми l1 и l2, то (поскольку точка A ∈ l1 переводится движением s1 в себя, а движением s2 - в симметричную относительно l2 точку B) движение s2 ∘ s1, переводящее A в B, представляет собой поворот (вокруг точки O) на угол 2φ.