Какое наименьшее число сравнений является заведомо достаточным, если количество предметов равно: а) 3; б) 4; в) 5?

19.48. Формула для максимума Предположим, что калькулятор имеет помимо четырех арифметических операций также и операцию взятия абсолютной величины числа. Придумайте формулу, по которой на этом калькуляторе можно найти наибольшее из двух произвольных чисел.

19.49. Перевозка ящиков Вес нескольких ящиков с грузом в общей сложности составляет 10 т, причем каждый ящик весит не более 1 т. За какое наименьшее количество поездок трехтонная машина заведомо сможет перевезти весь этот груз?

19.50. На неправильных весах Вы хотите отвесить 2 кг сахару на неравноплечих чашечных весах с помощью одной килограммовой гири. Подумайте над вопросом: больше или меньше 2 кг сахару вы получите, если отвесите 1 кг на одной чашке весов и еще 1 кг на другой? Можно ли на таких весах отвесить ровно 2 кг?

19.51. Простейшие весы Знаете ли вы, что весы можно изготовить из самой обыкновенной линейки с делениями для взвешивания, на которой нужна всего одна гиря? Если не знаете, то придумайте, как это сделать.

19.52. Сверка часов Вы хотите установить более точное время на стенных часах в вашем доме. Ближайшие часы находятся в нескольких минутах ходьбы и показывают правильное время, однако отнести туда стенные часы вы не можете.

Как поступить?

19.53. Распределение работы Одна машинистка печатает страницу текста в среднем за 6 минут, а другая - за 10 минут. В каком отношении нужно распределить между ними работу по печатанию рукописи, чтобы эта работа была завершена в кратчайшее время? i

19.54. Без замены шин Зная, через сколько километров пути стираются шины на передних и задних колесах легкового автомобиля, придумайте способ, как максимально удлинить его пробег, не заменяя шин ни на одном из четырех колес автомобиля.

19.55. Суммарный эффект Внедрение одного изобретения сокращает производственные затраты на 50%, второго - на 40%, а третьего - на 10%, На сколько процентов позволит сократить производственные затраты внедрение всех трех изобретений сразу?

19.56. Постоянное пастбище На лугу растет трава. На этот луг пустили 30 коров, которые за 4 дня съели всю траву. Когда на лугу снова выросла трава, на него пустили 25 коров, которые съели всю траву за 6 дней. Какое наибольшее количество коров может пастись на лугу все время (пока вообще растет трава)?

19.57. Обойдя вокруг Парашютист приземлился ночью около стены, окружающей некоторый участок земли в форме многоугольника. Пройдя вдоль всей стены и замерив какие-то углы, парашютист определил, где он находится: внутри участка или снаружи.

Как он это выяснил?

19.58. Как установить табуретку Пол в вашей комнате не очень ровный, зато табуретка совершенно ровная, т. е. нижние концы ее ножек лежат в одной плоскости и образуют квадрат. Как наиболее простым способом установить табуретку, чтобы она не качалась?

19.59. Диагональ кирпича Для того, чтобы найти длину главной диагонали кирпича, т. е. расстояние между наиболее удаленными его вершинами, можно измерить линейкой, например, длину, ширину и высоту кирпича, а затем воспользоваться теоремой Пифагора. Предложите способ измерения линейкой главной диагонали, не требующий никаких вычислений.

19.60. Диаметр проволоки Как измерить с помощью линейки диаметр очень тонкой проволоки?

19.61. Не разматывая рулон Бумажная лента свернута в рулон. Как с помощью линейки определить примерную длину ленты, не разматывая весь рулон целиком?

19.62. Радиус пластинки У вас в руках оказался осколок круглой пластинки. Можно ли по этому осколку определить радиус целой пластинки?

19.63. Объем шара Как с помощью измерительной ленты (сантиметра) определить объем данного шара?

19.64. С маяка Как далеко видно с маяка данной высоты над уровнем моря?

19.65. Радиус шара У вас есть циркуль, линейка, карандаш и бумага. Можете ли вы с их помощью построить отрезок, равный радиусу бильярдного шара, помня, конечно, что прямые линии на сфере рисовать невозможно.

19.66. Наибольший участок Вам нужно отгородить забором фиксированной длины прямоугольный участок. Каким должен быть этот участок, чтобы его площадь была наибольшей?

19.67. Наибольший палисадник У стены дома нужно разбить прямоугольный палисадник, отгородив три его стороны забором фиксированной длины. При каком отношении этих сторон площадь палисадника будет наибольшей?

19.68. Наибольшая коробка Из квадратного листа картона нужно сделать коробку, отрезав от каждого из углов по квадратику (на рис. 138 эти квадратики заштрихованы) и загнув боковые стенки. Каким должно быть отношение высоты коробки к стороне ее основания, чтобы объем коробки был наибольшим?

000592.jpeg

Рис. 138

19.69. Оптимальная форма Все вы видели, как устроен обычный спичечный коробок: он имеет в общей сложности 2 торцевые стенки, 1 крышку, 2 дна и 4 боковые стенки (рис. 139). Какой должна быть форма коробка с фиксированным объемом, чтобы на его изготовление затрачивалось наименьшее количество материала?

000593.jpeg

Рис. 139

19.70. Электропроводка Требуется соединить стенной проводкой выключатель и лампочку в зале длиной 30 м, а шириной и высотой по 12 м (рис. 140). Выключатель находится посреди торцевой стены на высоте 1 м от пола, а лампочка находится посреди противоположной стены на расстоянии 1 м от потолка.

000594.jpeg

Рис. 140

По какому кратчайшему пути должна проходить проводка?

19.71. Не пробивая стенку На внутренней стенке открытого сверху цилиндрического бункера, сечение которого имеет длину окружности 6 м, а высота которого равна 4 м, находится лампочка на расстоянии 1 м от верха. Напротив лампочки снаружи бункера на высоте 1 м от пола находится выключатель (рис. 141).

000595.jpeg

Рис. 141

Какой наименьшей длины провод нужен для проведения стенной проводки между выключателем и лампочкой, не пробивая стенку?

19.72. Не мала ли салфетка? Можно ли завернуть единичный кубик в квадратную салфетку размером 3*3?

19.73. Наибольшая площадь Из прямоугольного треугольника нужно вырезать прямоугольник так, чтобы одна из его вершин совпадала с вершиной прямого угла треугольника, две другие вершины лежали на катетах и одна вершина на гипотенузе, а площадь его была наибольшей.

19.74. Наименьшая площадь Через данную точку внутри угла нужно провести прямую, отсекающую от угла треугольник наименьшей площади. Как это сделать?

19.75. Треугольник из круга Из какого наименьшего бумажного круга можно вырезать треугольник, стороны которого равны 2, 3 и 4?

19.76. Лучший гвоздь В бревно вбито три гвоздя одинаковой длины и массы, но разного сечения: круглый, квадратный и треугольный. Какой из гвоздей держится крепче?

19.77. Не пересчитывая ответ Лист бумаги разорвали на 4 части, затем какие-то из этих частей разорвали на 4 части и т. д. Когда сосчитали общее число частей, то их оказалось то ли 66, то ли 67.

Можно ли, не пересчитывая, уточнить ответ?

19.78. На несколько квадратов Бумажный квадрат требуется разрезать на несколько более мелких квадратов, не обязательно одинаковых. Каким может быть их количество?

19.79. Плитка шоколада Вы хотите разломать плитку шоколада на мелкие квадратные дольки, из которых она состоит. Какое наименьшее число разломов вам для этого потребуется сделать при условии, что разные куски шоколада нужно ломать отдельно?

19.80. Раскраска карты Территория страны разбита на области прямыми линиями. Какое наименьшее число красок необходимо для такой раскраски карты страны, чтобы никакие две области, имеющие общую границу, не оказались одного цвета?

19.81. Огромная дыра Сумеете ли вы разрезать лист из школьной тетради так, чтобы в итоге образовалось кольцо, через которое мог бы свободно пролезть взрослый человек?

19.82. Треугольный паркет Из правильных треугольников можно сложить паркет, т. е. замостить ими всю плоскость без наложений и дыр. А можно ли сложить паркет из произвольных неправильных, но все же одинаковых треугольников?

19.83. Четырехугольный паркет Из каких одинаковых четырехугольников можно сложить паркет?

19.84. Пятью прямыми Проведите 5 прямых, каждая из которых делит заданный прямоугольник на 2 равные части.

19.85. Дырявый прямоугольник Внутри прямоугольного листа бумаги вырезана дырка, имеющая форму параллелограмма (рис. 142). Предложите какой-нибудь способ, как разрезать этот лист на две части одинаковой площади.

000596.jpeg

Рис. 142

19.86. Треугольник наизнанку Вы вырезали из цветной бумаги треугольник, да, как выяснилось, у него цветной оказалась не та сторона. Как разрезать этот треугольник на части, чтобы, перевернув их обратной стороной, можно было сложить его снова?

19.87. Площадь пополам Из бумаги вырезан выпуклый четырехугольник. По какой линии, проходящей через данную его вершину, нужно провести разрез, чтобы четырехугольник разделился на две части одинаковой площади?

19.88. Теорема Пифагора На сторонах прямоугольного треугольника построены квадраты (рис. 143). Согласно теореме Пифагора, площадь наибольшего из них равна сумме площадей двух меньших.

000595.jpeg

Рис. 143

Попробуйте продемонстрировать этот факт, вырезав два меньших квадрата и разрезав их на такие части, из которых можно составить большой квадрат.

19.89. Плотное заполнение Можно ли ящик размером 20*15*14 заполнить коробками размером 3*5*10 так, чтобы в ящике не осталось пустот и из него не выступали коробки?

19.90. Заготовки для пельменей Из квадратного листа теста размером 8*8 нужно вырезать круги диаметром 1 для изготовления пельменей. Можно ли разместить на этом листе более 64 кругов?

19.91. На почтительном расстоянии Можно ли на круглом поле диаметром 1 км пробурить 125 скважин так, чтобы расстояние между любыми двумя скважинами было больше 100 м?


Перейти на страницу:
Изменить размер шрифта: