Рис. 5. Внешний вид клетки.
Хромосомы есть во всех клетках без исключения. Однако наблюдать их с помощью микроскопа можно только в том случае, если они сжаты, спирализованы, плотно упакованы. В период деления клетки ядерная оболочка растворяется, а хромосомы укладываются в спираль, хорошо окрашиваются специальными красителями и становятся видимыми в световой микроскоп. Далее хромосомы располагаются по экватору клетки, делятся и расходятся к разным полюсам. Делится и цитоплазма. Хромосомы вновь деспирализуются (раскручиваются) и образуют ядерную оболочку. Так из одной материнской клетки образуются две дочерние, совершенно одинаковые. Интересно, что количество ДНК в новых клетках не уменьшается, а остается прежним, так как до начала деления происходит его удвоение (репликация). Такое удвоение получило название митоза.
Рис. 6. Внутреннее строение клетки (схема).
Хромосомы в клетках обнаружены учеными давно, однако только в 1902—1935 годах Томасом Г. Морганом и представителями его школы сформулирована хромосомная теория наследственности. Известно, что у одного и того же вида животных и растений количество хромосом одинаково во всех клетках (кроме половых), у разных же видов — различно. Так, у мыши их 40, крысы — 42, лисицы — 34, свиньи — 38, кролика — 44, человекообразной обезьяны — 48, осла — 62, лошади—64, дрозофилы — 8. Только в 1956 году было точно установлено, что у человека в клетках содержится 46 хромосом — 44 аутосомы и 2 половые хромосомы, а до этого времени считалось, что их 48, как и у обезьяны. Точный анализ хромосом удалось провести благодаря тому, что наука обогатилась новыми методами приготовления препаратов.
Уже в 1959 году была выявлена хромосомная аномалия у человека — так называемый синдром Клайнфельтера. Эта болезнь была описана врачом еще в 1942 году. Ее характерные признаки: высокий рост, гинекомастия, атрофия яичек, мягкая форма дебильности и др. Причина появления этого синдрома — наличие лишней Х-хромосомы в генотипе больного (44 + + XXY). Интересно, что в 1949 году М. Барр обнаружил в ядре неделящейся клетки присутствие интенсивно красящегося объекта, который был назван именем ученого — тельцем Барра (половой хроматин). Последнее присутствует только в клетках женщин и отсутствует в клетках здоровых мужчин. Позднее было установлено, что при наличии двух Х-хромосом в клетке одна из них находится в плотно сжатом состоянии, образуя тельце Барра. У мужчин с синдромом Клайнфельтера в ядрах клеток также присутствует тельце Барра.
В каждой клетке организма человека или животного имеются две хромосомы одного размера и одинаковой формы. Одна из них (гомологичная) получена or отца, другая — от матери. Чтобы число хромосом не возрастало от одного поколения к другому, в половых клетках (гаметах) их должно быть вдвое меньше, чем в зиготе (оплодотворенной яйцеклетке). Уменьшение же числа хромосом вдвое происходит в результате особого клеточного деления — мейоза, наблюдающегося при образовании гамет. При мейозе каждая из хромосом удваивается, гомологичные хромосомы сближаются, образуя пары. Этот процесс носит название конъюгации хромосом. Хромосомы вытягиваются (деспирализуются), что обеспечивает тесное сближение их отдельных участков. При этом в некоторых местах происходит перекручивание хромосом, составляющих пару. Затем, вследствие спирализации, конъюгирующие хромосомы укорачиваются, располагаются по экватору клетки и в анафазе (стадии деления ядра) сближенные ранее гомологичные удвоенные хромосомы расходятся к разным полюсам.
Таким образом, к каждому полюсу отходит лишь одна из парных гомологичных хромосом. Обычно вслед за этим сразу начинается второе деление. Однако у человека в отличие от животных и растений эти два деления в значительной степени разделены во времени: первое редукционное деление хромосом (уменьшительное) плода происходит в период 3—6 месяцев внутриутробного развития, второе — спустя 10—12 лет (а последней половой клетки — примерно через 40 лет).
Итак, в отличие от обычного деления (митоза) в мейозе ядро делится на два ядра, а хромосомы удваиваются один раз. В результате этих делений из одной клетки образуется четыре, число хромосом в которых уменьшается вдвое. Новые клетки содержат не двойной (диплоидный — 2п), а одинарный (гаплоидный — 1n) набор хромосом (рис. 7). При слиянии двух гаплоидных гамет в зиготе диплоидный набор хромосом восстанавливается.
Сколько отцовских и сколько материнских хромосом получит каждая зигота? Это очень важно, так как оказывается, что хромосомы, полученные от отца и матери, рекомбинируются (обмениваются участками) в процессе мейоза совершенно свободно. При расхождении гомологичных хромосом к одному полюсу могут отойти две материнские, к другому — две отцовские. Однако с равной вероятностью могут состояться и другие комбинации — например, к каждому полюсу отойдут одна материнская и одна отцовская хромосомы. А если у человека 23 пары хромосом, то сколько же разнообразнейших комбинаций может возникнуть в гаметах? И каждый участок хромосомы (ген) оказывает специфическое влияние на развитие наследственных признаков организма. Таким образом, именно мейоз обеспечивает возникновение огромного разнообразия сочетания признаков родителей и потомков.
Рис. 7. Мейоз и образование сперматозоидов (а) и яйцеклетки (б) у человека (схема).
Это разнообразие увеличивается еще и тем, что в процессе конъюгации гомологичные хромосомы обмениваются участками, наследственные особенности которых не всегда одинаковы. Первоначальное предположение о каком-то определенном расположении генов в хромосомах возникло тогда, когда на модельных объектах было установлено, что некоторые признаки, обусловленные генами, наследуются связанно друг с другом. Тенденцию признаков наследоваться совместно, а не порознь назвали сцеплением. Групп сцепления столько, сколько пар хромосом у конкретного вида. Ученые, тщательно изучив закономерности появления различных признаков при гибридизации у животных и растений, обнаружили, что сцепление признаков характерно как для животных (в том числе человека), так и для растений.
В результате анализа сцепления и связанного с ним процесса обмена участками конъюгирующих хромосом в каждой паре (одна хромосома — от отца, другая — от матери) установлено, что гены в хромосомах расположены в линейном порядке.
В настоящее время не только подтверждено линейное расположение генов в хромосомах, но и выяснена их сложная химическая структура в виде огромных молекул ДНК. Сейчас принято считать, что ген — это линейная последовательность пар нуклеотидов (от нескольких сотен до тысячи и даже более), кодирующая определенную функцию, а хромосома — это линейная последовательность генов.
Основные закономерности наследования признаков описаны еще в 1865 году Грегором Менделем и основаны на расхождении хромосом в мейозе. Поскольку мейоз характерен для всех организмов, размножающихся половым путем, то закономерности наследования у них одни.
Однако вернемся к митозу. Мы выяснили, что наследство распределяется наследницам поровну. В то же время при делении клетки и репликации (удвоении) генетического материала, хотя и редко, но происходят ошибки. Более того, именно путем проб и ошибок шла вся эволюция живых организмов. Именно ошибкам — отклонениям от генетической программы развития, которые происходят всегда и на всех уровнях жизни, обязан прогресс организмов, видов, родов, семейств. Некоторые отклонения от нормы как бы сообщают данному организму дополнительные возможности, а, значит, и некоторые преимущества перед другими организмами. Изменения, происходящие в наследственных структурах (ДНК), влияют на развитие и проявление новых признаков, морфологических, физиологических или биохимических особенностей.