Выведено Л. Эйлером в 1744.
Эйлера уравнения
Э'йлера уравне'ния,
1) в механике — динамические и кинематические уравнения, используемые при изучении движения твёрдого тела; даны Л. Эйлером в 1765.
Динамические Э. у. представляют собой дифференциальные уравнения движения твёрдого тела вокруг неподвижной точки и имеют вид
Ix![]()
Iy![]()
Iz![]()
где Ix, Iy, Iz — моменты инерции тела относительно гл. осей инерции, проведённых из неподвижной точки, wх, wу, wz — проекции мгновенной угловой скорости тела на эти оси, Mx, My, Mz — гл. моменты сил, действующих на тело, относительно тех же осей;
Кинематические Э. у. дают выражения wх, wу, wz через Эйлеровы углы j, y, q и имеют вид
wx=
wу=
wz=
Система уравнений (1) и (2) позволяет, зная закон движения тела, определить момент действующих на него сил, и, наоборот, зная действующие на тело силы, определить закон его движения.
2) В гидромеханике — дифференциальные уравнения движения идеальной жидкости в переменных Эйлера. Если давление р, плотность r, проекции скоростей частиц жидкости u, u, w и проекции действующей объёмной силы X, У, Z рассматривать как функции координат x, у, z точек пространства и времени t (переменные Эйлера), то Э. у. в проекциях на прямоугольные декартовы оси координат будут:
Решение общей задачи гидромеханики в переменных Эйлера сводится к тому, чтобы, зная X, У, Z, а также начальные и граничные условия, определить u, u, w, р, r, как функции х, у, z и t. Для этого к Э. у. присоединяют уравнение неразрывности в переменных Эйлера
В случае баротропной жидкости, у которой плотность зависит только от давления, 5-м уравнением будет уравнение состояния r = j (р) (или r — const, когда жидкость несжимаема).
Э. у. пользуются при решении разнообразных задач гидромеханики.
Лит.: Бухгольц Н. Н., Основной курс теоретической механики, ч. 2, 9 изд., М., 1972, §14, 16; Лойцянский Л. Г., Механика жидкости и газа, 4 изд., М., 1973.
С. М. Тарг.
Эйлера формулы
Э'йлера фо'рмулы в математике, важнейшие формулы, установленные Л. Эйлером.
1) Э. ф., связывающие тригонометрические функции с показательной (1743):
eix = cos х + i sin х,
2) Э. ф., дающая разложение функции sin х в бесконечное произведение (1740):
3) Тождество Эйлера о простых числах:

где s = 1, 2,..., и произведение берётся по всем простым числам р.
4) Тождество Эйлера о четырёх квадратах:
(a2 +b2 + c2 + d2)(p2 + q2 + r2 + s2 = x2+y2+z2+t2, где
![]()
![]()
![]()
5) формула Эйлера о кривизнах (1760):
Она даёт выражение кривизны 1/R любого нормального сечения поверхности через её главные кривизны 1/R1 и 1/R2 и угол j между одним из главных направлений и данным направлением.
Эйлеру принадлежит также Эйлера—Маклорена формула суммирования, Эйлера—Фурье формулы для коэффициентов разложений функций в тригонометрические ряды.
Лит. см. при ст. Эйлер.